Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag localization relative to a single scanning device. First, we adopt an ultra-low power tag design in which the tag blindly modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2m up to 8 meters range.
more »
« less
LOCATER: Cleaning WiFi Connectivity Datasets for Semantic Localization
This paper explores the data cleaning challenges that arise in using WiFi connectivity data to locate users to semantic indoor locations such as buildings, regions, rooms. WiFi connectivity data consists of sporadic connections between devices and nearby WiFi access points (APs), each of which may cover a relatively large area within a building. Our system, entitled semantic LOCATion cleanER (LOCATER), postulates semantic localization as a series of data cleaning tasks - first, it treats the problem of determining the AP to which a device is connected between any two of its connection events as a missing value detection and repair problem. It then associates the device with the semantic subregion (e.g., a conference room in the region) by postulating it as a location disambiguation problem. LOCATER uses a bootstrapping semi-supervised learning method for coarse localization and a probabilistic method to achieve finer localization. The paper shows that LOCATER can achieve significantly high accuracy at both the coarse and fine levels.
more »
« less
- PAR ID:
- 10251139
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- ISSN:
- 2150-8097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Offloading cellular traffic to WiFi networks plays an important role in alleviating the increasing burden on cellular networks. However, excessive traffic offloading brings severe packet collisions into a WiFi network due to its contention-based medium access scheme, which significantly reduces the WiFi network’s throughput. In this paper, we propose DAO, a device-to-device (D2D) communications assisted traffic offloading scheme to improve the amount of traffic offloaded from cellular to WiFi in integrated cellular and WiFi networks. Specifically, in an integrated cellular-WiFi network, the cellular network exploits D2D communications in licensed cellular bands to aggregate traffic from cellular users before offloading it to the WiFi network to reduce the number of contending users in WiFi access. The traffic offloading process in DAO is formulated as an optimization problem that jointly takes into account the activations of aggregation nodes (ANs) and the connections between ANs and offloading users to maximize the offloaded traffic while guaranteeing the long-term data rates required by the offloading users. Extensive simulation results reveal the significant performance gain achieved by DAO over the existing schemes.more » « less
-
Dead reckoning is a promising yet often overlooked smartphone-based indoor localization technology that relies on phone-mounted sensors for counting steps and estimating walking directions, without the need for extensive sensor or landmark deployment. However, misalignment between the phone’s direction and the user’s actual movement direction can lead to unreliable direction estimates and inaccurate location tracking. To address this issue, this paper introduces SWiLoc (Smartphone and WiFi-based Localization), an enhanced direction correction system that integrates passive WiFi sensing with smartphone-based sensing to form Correction Zones. Our two-phase approach accurately measures the user’s walking directions when passing through a Correction Zone and further refines successive direction estimates outside the zones, enabling continuous and reliable tracking. In addition to direction correction, SWiLoc extends its capabilities by incorporating a localization technique that leverages corrected directions to achieve precise user localization. This extension significantly enhances the system’s applicability for high-accuracy localization tasks. Additionally, our innovative Fresnel zone-based approach, which utilizes unique hardware configurations and a fundamental geometric model, ensures accurate and robust direction estimation, even in scenarios with unreliable walking directions. We evaluate SWiLoc across two real-world environments, assessing its performance under varying conditions such as environmental changes, phone orientations, walking directions, and distances. Our comprehensive experiments demonstrate that SWiLoc achieves an average 75th percentile error of 8.89 degrees in walking direction estimation and an 80th percentile error of 1.12 m in location estimation. These figures represent reductions of 64% and 49%, respectively for direction and location estimation error, over existing state-of-the-art approaches.more » « less
-
This paper presents the WiFi-Sensor-for-Robotics (WSR) toolbox, an open source C++ framework. It enables robots in a team to obtain relative bearing to each other, even in non-line-of-sight (NLOS) settings which is a very challenging problem in robotics. It does so by analyzing the phase of their communicated WiFi signals as the robots traverse the environment. This capability, based on the theory developed in our prior works, is made available for the first time as an opensource tool. It is motivated by the lack of easily deployable solutions that use robots' local resources (e.g WiFi) for sensing in NLOS. This has implications for localization, ad-hoc robot networks, and security in multi-robot teams, amongst others. The toolbox is designed for distributed and online deployment on robot platforms using commodity hardware and on-board sensors. We also release datasets demonstrating its performance in NLOS and line-of-sight (LOS) settings for a multi-robot localization usecase. Empirical results show that the bearing estimation from our toolbox achieves mean accuracy of 5.10 degrees. This leads to a median error of 0.5m and 0.9m for localization in LOS and NLOS settings respectively, in a hardware deployment in an indoor office environment.more » « less
-
null (Ed.)In this paper, we aimed to study the energy consumption problem in a collaborative activity monitoring system (CAMS) that consists of a compan- ion robot and a wearable device. First, we tested the energy consumption in different operation modes of the system. Based on that, we analyzed the effect of band- width on the time cost and energy consumption which allowed us to combine WiFi and Bluetooth together for data transmission to improve the performance of the system. Second, we preprocessed the image data on the wearable device to reduce the size of images before sending them to the robot, and analyzed the time and energy consumption cost by local computing and data transmission. Third, based on the bandwidth of WiFi and Bluetooth, the requirement of time and energy consumption, we proposed an optimization problem on image sizes in which the wearable device decides how to send the data to the robot to reduce the energy and time cost. The results showed that the relations between the bandwidth, time cost, image resolutions and energy consumption could be used to improve the performance of CAMS.more » « less
An official website of the United States government

