skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Player-compatible learning and player-compatible equilibrium
Award ID(s):
1951056
PAR ID:
10251303
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Economic Theory
Volume:
194
Issue:
C
ISSN:
0022-0531
Page Range / eLocation ID:
105238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate robust data aggregation in a multi-agent online learning setting. In reality, multiple online learning agents are often deployed to perform similar tasks and receive similar feedback. We study how agents can improve their collective performance by sharing information among each other. In this paper, we formulate the ε-multi-player multi-armed bandit problem, in which a set of M players that have similar reward distributions for each arm play concurrently. We develop an upper confidence bound-based algorithm that adaptively aggregates rewards collected by different players. To our best knowledge, we are the first to develop such a scheme in a multi-player bandit learning setting. We show that under the assumption that pairwise distances between the means of the player-dependent distributions for each arm are small, we improve the (collective) regret bound by nearly a factor of M , in comparison with a baseline algorithm in which the players learn individually using the UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits a fallback guarantee, namely, if our task similarity assumption fails to hold, our algorithm still has a performance guarantee that cannot be worse than the baseline by a constant factor. Empirically, we validate our algorithm on synthetic data. 
    more » « less
  2. Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and updates on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs. 
    more » « less
  3. Embeddings, low-dimensional vector representation of objects, are fundamental in building modern machine learning systems. In industrial settings, there is usually an embedding team that trains an embedding model to solve intended tasks (e.g., product recommendation). The produced embeddings are then widely consumed by consumer teams to solve their unintended tasks (e.g., fraud detection). However, as the embedding model gets updated and retrained to improve performance on the intended task, the newly-generated embeddings are no longer compatible with the existing consumer models. This means that historical versions of the embeddings can never be retired or all consumer teams have to retrain their models to make them compatible with the latest version of the embeddings, both of which are extremely costly in practice. Here we study the problem of embedding version updates and their backward compatibility. We formalize the problem where the goal is for the embedding team to keep updating the embedding version, while the consumer teams do not have to retrain their models. We develop a solution based on learning backward compatible embeddings, which allows the embedding model version to be updated frequently, while also allowing the latest version of the embedding to be quickly transformed into any backward compatible historical version of it, so that consumer teams do not have to retrain their models. Our key idea is that whenever a new embedding model is trained, we learn it together with a light-weight backward compatibility transformation that aligns the new embedding to the previous version of it. Our learned backward transformations can then be composed to produce any historical version of embedding. Under our framework, we explore six methods and systematically evaluate them on a real-world recommender system application. We show that the best method, which we call BC-Aligner, maintains backward compatibility with existing unintended tasks even after multiple model version updates. Simultaneously, BC-Aligner achieves the intended task performance similar to the embedding model that is solely optimized for the intended task. 
    more » « less
  4. Experience Management studies AI systems that automatically adapt interactive experiences such as games to tailor to specific players and to fulfill design goals. Although it has been explored for several decades, existing work in experience management has mostly focused on single-player experiences. This paper is a first attempt at identifying the main challenges to expand EM to multi-player/multi-user games or experiences. We also make connections to related areas where solutions for similar problems have been proposed (especially group recommender systems) and discusses the potential impact and applications of multi-player EM. 
    more » « less