skip to main content

Title: Analysis of the Innovation Trend in Cell-Free Synthetic Biology
Cell-free synthetic biology is a maturing field that aims to assemble biomolecular reactions outside cells for compelling applications in drug discovery, metabolic engineering, biomanufacturing, diagnostics, and education. Cell-free systems have several key features. They circumvent mechanisms that have evolved to facilitate species survival, bypass limitations on molecular transport across the cell wall, enable high-yielding and rapid synthesis of proteins without creating recombinant cells, and provide high tolerance towards toxic substrates or products. Here, we analyze ~750 published patents and ~2000 peer-reviewed manuscripts in the field of cell-free systems. Three hallmarks emerged. First, we found that both patent filings and manuscript publications per year are significantly increasing (five-fold and 1.5-fold over the last decade, respectively). Second, we observed that the innovation landscape has changed. Patent applications were dominated by Japan in the early 2000s before shifting to China and the USA in recent years. Finally, we discovered an increasing prevalence of biotechnology companies using cell-free systems. Our analysis has broad implications on the future development of cell-free synthetic biology for commercial and industrial applications.
Authors:
; ; ; ; ;
Award ID(s):
1806366
Publication Date:
NSF-PAR ID:
10251343
Journal Name:
Life
Volume:
11
Issue:
6
Page Range or eLocation-ID:
551
ISSN:
2075-1729
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits.

  2. Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane–membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane–membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane–membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.
  3. Society has long been exposed to naturally-occurring nanoparticles. Due to their ubiquitous nature, biological systems have adapted and built protection against their potential effects. However, for the past decades, there have been onslaughts of newly engineered nanoparticles being released in the environment with no known effects on ecosystems. Although these materials offer distinct advantages in manufacturing processes, such as odor-free fabric or controlled drug delivery, their fate in nature has yet to be thoroughly investigated. As the size of an already-large NPs market is expected to grow, due to advances in synthetic biology, it is vital that we increase our understanding of their impacts on human, food and natural ecosystems. Recent studies have shown that NPs affect phytoplankton biomass and diversity in the ocean, solely by regulating micronutrients bioavailability. These types of changes could ultimately impact several biogeochemical cycles, as phytoplankton are responsible for almost half of the primary production on earth. Consequently, this study was designed to evaluate the impact of various concentrations (0µM, 20µM, 40µM, 80µM and 100µM) of several manufactured nanoparticles (gold, carbon and iron) on the dynamics of four economically important microalgae strains. Responses, such as chlorophyll content, protein, lipid content, lipid profile, biomass and cellmore »morphology were monitored over a period of two weeks. No significant acute toxicity was exhibited within the first 24 hours of exposure. However, after 4 days, a remarkably high mortality rate was detected with increasing NPs concentrations of Fe60, C80 and Au60. Iron suspensions were found to be more toxic to the microalgae strains tested than those of Gold and Carbon under comparable regimes. Further investigations with other, either positively or negatively charged nanoparticles, should provide a deeper understanding on the impacts on these engineered materials in our ecosystems.« less
  4. Society has long been exposed to naturally-occurring nanoparticles. Due to their ubiquitous nature, biological systems have adapted and built protection against their potential effects. However, for the past decades, there have been onslaughts of newly engineered nanoparticles being released in the environment with no known effects on ecosystems. Although these materials offer distinct advantages in manufacturing processes, such as odor-free fabric or controlled drug delivery, their fate in nature has yet to be thoroughly investigated. As the size of an already-large NPs market is expected to grow, due to advances in synthetic biology, it is vital that we increase our understanding of their impacts on human, food and natural ecosystems. Recent studies have shown that NPs affect phytoplankton biomass and diversity in the ocean, solely by regulating micronutrients bioavailability. These types of changes could ultimately impact several biogeochemical cycles, as phytoplankton are responsible for almost half of the primary production on earth. Consequently, this study was designed to evaluate the impact of various concentrations (0μM, 20μM, 40μM, 80μM and 100μM) of several manufactured nanoparticles (gold, carbon and iron) on the dynamics of four economically important microalgae strains. Responses, such as chlorophyll content, protein, lipid content, lipid profile, biomass and cellmore »morphology were monitored over a period of two weeks. No significant acute toxicity was exhibited within the first 24 hours of exposure. However, after 4 days, a remarkably high mortality rate was detected with increasing NPs concentrations of Fe60, C80 and Au60. Iron suspensions were found to be more toxic to the microalgae strains tested than those of Gold and Carbon under comparable regimes. Further investigations with other, either positively or negatively charged nanoparticles, should provide a deeper understanding on the impacts on these engineered materials in our ecosystems.« less
  5. Abstract The new generation of cell-free gene expression systems enables the prototyping and engineering of biological systems in vitro over a remarkable scope of applications and physical scales. As the utilization of DNA-directed in vitro protein synthesis expands in scope, developing more powerful cell-free transcription–translation (TXTL) platforms remains a major goal to either execute larger DNA programs or improve cell-free biomanufacturing capabilities. In this work, we report the capabilities of the all-E. coli TXTL toolbox 3.0, a multipurpose cell-free expression system specifically developed for synthetic biology. In non-fed batch-mode reactions, the synthesis of the fluorescent reporter protein eGFP (enhanced green fluorescent protein) reaches 4 mg/ml. In synthetic cells, consisting of liposomes loaded with a TXTL reaction, eGFP is produced at concentrations of >8 mg/ml when the chemical building blocks feeding the reaction diffuse through membrane channels to facilitate exchanges with the outer solution. The bacteriophage T7, encoded by a genome of 40 kb and ∼60 genes, is produced at a concentration of 1013 PFU/ml (plaque forming unit/ml). This TXTL system extends the current cell-free expression capabilities by offering unique strength and properties, for testing regulatory elements and circuits, biomanufacturing biologics or building synthetic cells.