skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks
Abstract Owing to its simple preparation and high oxygen content, nitroformate [ − C(NO 2 ) 3 , NF] is an extremely attractive oxidant component for propellants and explosives. However, the poor thermostability of NF-based derivatives has been an unconquerable barrier for more than 150 years, thus hindering its application. In this study, the first example of a nitrogen-rich hydrogen-bonded organic framework (HOF-NF) is designed and constructed through self-assembly in energetic materials, in which NF anions are trapped in pores of the resulting framework via the dual force of ionic and hydrogen bonds from the strengthened framework. These factors lead to the decomposition temperature of the resulting HOF-NF moiety being 200 °C, which exceeds the challenge of thermal stability over 180 °C for the first time among NF-based compounds. A large number of NF-based compounds with high stabilities and excellent properties can be designed and synthesized on the basis of this work.  more » « less
Award ID(s):
1919565
PAR ID:
10251361
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Poly(ε-caprolactone) (PCL) is one of the leading biocompatible and biodegradable polymers. However, the mechanical property of PCL is relatively poor as compared with that of polyolefins, which has limited the active applications of PCL as an industrial material. In this study, to enhance the mechanical property of PCL, cellulose nanofibers (C-NF) with high mechanical property, were employed as reinforcement materials for PCL. The C-NF were fabricated via the electrospinning of cellulose acetate (CA) followed by the subsequent saponification of the CA nanofibers. For the enhancement of the mechanical property of the PCL composite, the compatibility of C-NF and PCL was investigated: the surface modification of the C-NF was introduced by the ring-opening polymerization of the ε-caprolactone on the C-NF surface (C-NF-g-PCL). The polymerization was confirmed by the Fourier transform infrared (FTIR) spectroscopy. Tensile testing was performed to examine the mechanical properties of the C-NF/PCL and the C-NF-g-PCL/PCL. At the fiber concentration of 10 wt%, the Young’s modulus of PCL compounded with neat C-NF increased by 85% as compared with that of pure PCL, while, compounded with C-NF-g-PCL, the increase was 114%. The fracture surface of the composites was analyzed by scanning electron microscopy (SEM). From the SEM images, it was confirmed that the interfacial compatibility between PCL and C-NF was improved by the surface modification. The results demonstrated that the effective surface modification of C-NF contributed to the enhancement of the mechanical property of PCL. 
    more » « less
  2. Abstract Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3corrosion. Herein, we designed and synthesized a Lewis basic single‐crystalline hydrogen‐bond crosslinked organic framework (HCOF‐50) for BF3storage and its application in catalysis. Specifically, we introduced self‐complementaryortho‐alkoxy‐benzamide hydrogen‐bonding moieties to direct the formation of highly organized hydrogen‐bonded networks, which were subsequently photo‐crosslinked to generate HCOFs. The HCOF‐50 features Lewis basic thioether linkages and electron‐rich pore surfaces for BF3uptake. As a result, HCOF‐50 shows a record‐high 14.2 mmol/g BF3uptake capacity. The BF3uptake in HCOF‐50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single‐crystal X‐ray structures, combined with the high BF3uptake capacity and controlled sorption, highlights the molecular understanding of framework‐guest interactions in addressing contemporary challenges. 
    more » « less
  3. We have prepared the first crystalline and 3D periodically ordered mesoporous quaternary semiconductor photocatalyst in an evaporation-induced self-assembly assisted soft-templating process. Using lab synthesized triblock-terpolymer poly(isoprene- b -styrene- b -ethylene oxide) (ISO) a highly ordered 3D interconnected alternating gyroid morphology was achieved exhibiting near and long-range order, as evidenced by small angle X-ray scattering (SAXS) and electron microscopy (TEM/SEM). Moreover, we reveal the formation process on the phase-pure construction of the material's pore-walls with its high crystallinity, which proceeds along a highly stable W 5+ compound, by both in situ and ex situ analyses, including X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR). The resulting photocatalyst CsTaWO 6 with its optimum balance between surface area and ordered mesoporosity ultimately shows superior hydrogen evolution rates over its non-ordered reference in photocatalytic hydrogen production. This work will help to advance new self-assembly preparation pathways towards multi-element multifunctional compounds for different applications, including improved battery and sensor electrode materials. 
    more » « less
  4. Abstract We provide a functional characterization of transcription factor NF-κB in protists and provide information about the evolution and diversification of this biologically important protein. We characterized NF-κB in two protists using phylogenetic, cellular, and biochemical techniques. NF-κB of the holozoanCapsaspora owczarzaki(Co) has an N-terminal DNA-binding domain and a C-terminal Ankyrin repeat (ANK) domain, and its DNA-binding specificity is more similar to metazoan NF-κB proteins than to Rel proteins. Removal of the ANK domain allowsCo-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing ofCo-NF-κB is not induced by IκB kinases in human cells. OverexpressedCo-NF-κB localizes to the cytoplasm inCocells.Co-NF-κB mRNA and DNA-binding levels differ across threeCapsasporalife stages. RNA-sequencing and GO analyses identify possible gene targets ofCo-NF-κB. Three NF-κB-like proteins from the choanoflagellateAcanthoeca spectabilis(As) contain conserved Rel Homology domain sequences, but lack C-terminal ANK repeats. All threeAs-NF-κB proteins constitutively enter the nucleus of cells, but differ in their DNA-binding abilities, transcriptional activation activities, and dimerization properties. These results provide a basis for understanding the evolutionary origins of this key transcription factor and could have implications for the origins of regulated immunity in higher taxa. 
    more » « less
  5. A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯OC hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol −1 ) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯OC hydrogen bond (1.5 kcal mol −1 ). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms. 
    more » « less