While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation—the sensing of mechanical forces generated within and outside the body—as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
- NSF-PAR ID:
- 10251422
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 917
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Synopsis -
Experiments and computations are presented for a foil pitching about its leading edge near a planar, solid boundary. The foil is examined when it is constrained in space and when it is unconstrained or freely swimming in the cross-stream direction. It was found that the foil has stable equilibrium altitudes: the time-averaged lift is zero at certain altitudes and acts to return the foil to these equilibria. These stable equilibrium altitudes exist for both constrained and freely swimming foils and are independent of the initial conditions of the foil. In all cases, the equilibrium altitudes move farther from the ground when the Strouhal number is increased or the reduced frequency is decreased. Potential flow simulations predict the equilibrium altitudes to within 3 %–11 %, indicating that the equilibrium altitudes are primarily due to inviscid mechanisms. In fact, it is determined that stable equilibrium altitudes arise from an interplay among three time-averaged forces: a negative jet deflection circulatory force, a positive quasistatic circulatory force and a negative added mass force. At equilibrium, the foil exhibits a deflected wake and experiences a thrust enhancement of 4 %–17 % with no penalty in efficiency as compared to a pitching foil far from the ground. These newfound lateral stability characteristics suggest that unsteady ground effect may play a role in the control strategies of near-boundary fish and fish-inspired robots.more » « less
-
Abstract When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations. We found that asymmetric pitch kinematics do affect near-boundary equilibria, resulting in the equilibria shifting either closer to or away from the planar boundary. The magnitude of the shift depends on whether the pitch kinematics have spatial asymmetry (e.g. a bias angle, θ 0 ) or temporal asymmetry (e.g. a stroke-speed ratio, τ ). Swimming at stable equilibrium requires less active control, while shifting the equilibrium closer to the boundary can result in higher thrust with no measurable change in propulsive efficiency. Our work reveals how asymmetric kinematics could be used to fine-tune a hydrofoil’s interaction with a nearby boundary, and it offers a starting point for understanding how fish and birds use asymmetries to swim near substrates, water surfaces, and sidewalls.more » « less
-
null (Ed.)It has been well documented that animals (and machines) swimming or flying near a solid boundary get a boost in performance. This ground effect is often modelled as an interaction between a mirrored pair of vortices represented by a true vortex and an opposite sign ‘virtual vortex’ on the other side of the wall. However, most animals do not swim near solid surfaces and thus near body vortex–vortex interactions in open-water swimmers have been poorly investigated. In this study, we examine the most energetically efficient metazoan swimmer known to date, the jellyfish Aurelia aurita , to elucidate the role that vortex interactions can play in animals that swim away from solid boundaries. We used high-speed video tracking, laser-based digital particle image velocimetry (dPIV) and an algorithm for extracting pressure fields from flow velocity vectors to quantify swimming performance and the effect of near body vortex–vortex interactions. Here, we show that a vortex ring (stopping vortex), created underneath the animal during the previous swim cycle, is critical for increasing propulsive performance. This well-positioned stopping vortex acts in the same way as a virtual vortex during wall-effect performance enhancement, by helping converge fluid at the underside of the propulsive surface and generating significantly higher pressures which result in greater thrust. These findings advocate that jellyfish can generate a wall-effect boost in open water by creating what amounts to a ‘virtual wall’ between two real, opposite sign vortex rings. This explains the significant propulsive advantage jellyfish possess over other metazoans and represents important implications for bio-engineered propulsion systems.more » « less
-
Metachronal rowing is a biological propulsion mechanism employed by many swimming invertebrates (e.g. copepods, ctenophores, krill and shrimp). Animals that swim using this mechanism feature rows of appendages that oscillate in a coordinated wave. In this study, we used observations of a swimming ctenophore (comb jelly) to examine the hydrodynamic performance and vortex dynamics associated with metachronal rowing. We first reconstructed the beating kinematics of ctenophore appendages based on a high-speed video of a metachronally coordinated row. Following the reconstruction, two numerical models were developed and simulated using an in-house immersed-boundary-method-based computational fluid dynamics solver. The two models included the original geometry (16 appendages in a row) and a sparse geometry (8 appendages, formed by removing every other appendage along the row). We found that appendage tip vortex interactions contribute to hydrodynamic performance via a vortex-weakening mechanism. Through this mechanism, appendage tip vortices are significantly weakened during the drag-producing recovery stroke. As a result, the swimming ctenophore produces less overall drag, and its thrust-to-power ratio is significantly improved (up to 55.0 % compared with the sparse model). Our parametric study indicated that such a propulsion enhancement mechanism is less effective at higher Reynolds numbers. Simulations were also used to investigate the effects of substrate curvature on the unsteady hydrodynamics. Our results illustrated that, compared with a flat substrate, arranging appendages on a curved substrate can boost the overall thrust generation by up to 29.5 %. These findings provide new insights into the fluid dynamic principles of propulsion enhancement underlying metachronal rowing.