skip to main content


Title: Accelerated AI development for autonomous materials synthesis in flow
Autonomous robotic experimentation strategies are rapidly rising in use because, without the need for user intervention, they can efficiently and precisely converge onto optimal intrinsic and extrinsic synthesis conditions for a wide range of emerging materials. However, as the material syntheses become more complex, the meta-decisions of artificial intelligence (AI)-guided decision-making algorithms used in autonomous platforms become more important. In this work, a surrogate model is developed using data from over 1000 in-house conducted syntheses of metal halide perovskite quantum dots in a self-driven modular microfluidic material synthesizer. The model is designed to represent the global failure rate, unfeasible regions of the synthesis space, synthesis ground truth, and sampling noise of a real robotic material synthesis system with multiple output parameters (peak emission, emission linewidth, and quantum yield). With this model, over 150 AI-guided decision-making strategies within a single-period horizon reinforcement learning framework are automatically explored across more than 600 000 simulated experiments – the equivalent of 7.5 years of continuous robotic operation and 400 L of reagents – to identify the most effective methods for accelerated materials development with multiple objectives. Specifically, the structure and meta-decisions of an ensemble neural network-based material development strategy are investigated, which offers a favorable technique for intelligently and efficiently navigating a complex material synthesis space with multiple targets. The developed ensemble neural network-based decision-making algorithm enables more efficient material formulation optimization in a no prior information environment than well-established algorithms.  more » « less
Award ID(s):
1902702
NSF-PAR ID:
10251476
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
17
ISSN:
2041-6520
Page Range / eLocation ID:
6025 to 6036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Forecasting models are a central part of many control systems, where high consequence decisions must be made on long latency control variables. These models are particularly relevant for emerging artificial intelligence (AI)-guided instrumentation, in which prescriptive knowledge is needed to guide autonomous decision-making. Here we describe the implementation of a long short-term memory model (LSTM) for forecasting of electron energy loss spectroscopy (EELS) data, one of the richest analytical probes of materials and chemical systems. We describe key considerations for data collection, preprocessing, training, validation, and benchmarking, showing how this approach can yield powerful predictive insight into order-disorder phase transitions. Finally, we comment on how such a model may integrate with emerging AI-guided instrumentation for powerful high-speed experimentation. 
    more » « less
  3. Abstract

    Forecasting models are a central part of many control systems, where high-consequence decisions must be made on long latency control variables. These models are particularly relevant for emerging artificial intelligence (AI)-guided instrumentation, in which prescriptive knowledge is needed to guide autonomous decision-making. Here we describe the implementation of a long short-term memory model (LSTM) for forecasting in situ electron energy loss spectroscopy (EELS) data, one of the richest analytical probes of materials and chemical systems. We describe key considerations for data collection, preprocessing, training, validation, and benchmarking, showing how this approach can yield powerful predictive insight into order-disorder phase transitions. Finally, we comment on how such a model may integrate with emerging AI-guided instrumentation for powerful high-speed experimentation.

     
    more » « less
  4. Abstract

    AI assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the efficacy of such joint decision-making, it is important to first understand the human’s reliance on AI. However, there is a disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not, researchers ask humans to provide independent decisions before they are shown AI assistance. This is done to make explicit the influence of AI assistance on the human’s decision. We develop a cognitive model that allows us to infer thelatentreliance strategy of humans on AI assistance without asking the human to make an independent decision. We validate the model’s predictions through two behavioral experiments. The first experiment follows aconcurrentparadigm where humans are shown AI assistance alongside the decision problem. The second experiment follows asequentialparadigm where humans provide an independent judgment on a decision problem before AI assistance is made available. The model’s predicted reliance strategies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled way to infer reliance on AI-assistance and may be used to expand the scope of investigation on human-AI collaboration.

     
    more » « less
  5. Applying AI power to predict syntheses of novel materials requires high-quality, large-scale datasets. Extraction of synthesis information from scientific publications is still challenging, especially for extracting synthesis actions, because of the lack of a comprehensive labeled dataset using a solid, robust, and well-established ontology for describing synthesis procedures. In this work, we propose the first unified language of synthesis actions (ULSA) for describing inorganic synthesis procedures. We created a dataset of 3040 synthesis procedures annotated by domain experts according to the proposed ULSA scheme. To demonstrate the capabilities of ULSA, we built a neural network-based model to map arbitrary inorganic synthesis paragraphs into ULSA and used it to construct synthesis flowcharts for synthesis procedures. Analysis of the flowcharts showed that (a) ULSA covers essential vocabulary used by researchers when describing synthesis procedures and (b) it can capture important features of synthesis protocols. The present work focuses on the synthesis protocols for solid-state, sol–gel, and solution-based inorganic synthesis, but the language could be extended in the future to include other synthesis methods. This work is an important step towards creating a synthesis ontology and a solid foundation for autonomous robotic synthesis. 
    more » « less