- Award ID(s):
- 1206795
- PAR ID:
- 10251506
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 9
- Issue:
- 47
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 41246 to 41257
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17 cm −3 and low-10 18 cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17 cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation.more » « less
-
The band alignment of Atomic Layer Deposited SiO2on (InxGa1−x)2O3at varying indium concentrations is reported before and after annealing at 450 °C and 600 °C to simulate potential processing steps during device fabrication and to determine the thermal stability of MOS structures in high-temperature applications. At all indium concentrations studied, the valence band offsets (VBO) showed a nearly constant decrease as a result of 450 °C annealing. The decrease in VBO was −0.35 eV for (In0.25Ga0.75)2O3, −0.45 eV for (In0.42Ga0.58)2O3, −0.40 eV for (In0.60Ga0.40)2O3, and −0.35 eV (In0.74Ga0.26)2O3for 450 °C annealing. After annealing at 600 °C, the band alignment remained stable, with <0.1 eV changes for all structures examined, compared to the offsets after the 450 °C anneal. The band offset shifts after annealing are likely due to changes in bonding at the heterointerface. Even after annealing up to 600 °C, the band alignment remains type I (nested gap) for all indium compositions of (InxGa1−x)2O3studied.
-
ABSTRACT Polyvinylidene fluoride‐iron oxide (PVDF‐Fe2O3) nanocomposites have been obtained my melt mixing of PVDF with Fe2O3nanoparticles. The interactions between the polymeric matrix and the nanofiller have been investigated by wide angle X‐ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, using both red and green excitations (lasers). WAXS, FTIR, and Raman spectra confirm that all samples contain
α PVDF as the major crystalline form of the polymeric matrix. Experimental data revealed small changes in the positions of X‐ray lines as well as modifications of the width of X‐ray lines upon loading by Fe2O3nanoparticles. FTIR and Raman spectra are dominated by the lines of the polymeric matrix. Within the experimental errors, the positions of Raman lines are not affected by the wavelength of the incoming electromagnetic radiation, although they are sensitive to the strain of the polymeric matrix induced by addition of the nanofiller. The loading of the polymeric matrix with nanoparticles stretches the macromolecular chains, affecting their vibrational spectra (FTIR and Raman). A complex dependence of the positions of some Raman and FTIR lines on the loading with Fe2O3is reported. The manuscript provides a detailed analysis of the effects of nanofiller on the position of WAXS, FTIR, and Raman lines. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020 ,137 , 48907.