skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Selective Carbon‐Supported Boron for Oxidative Dehydrogenation of Propane
Abstract Bulk boron materials, such as hexagonal boron nitride (h‐BN), are highly selective catalysts for the oxidative dehydrogenation of propane (ODHP). Previous attempts to improve the productivity of these systems involved the immobilization of boron on silica and resulted in less selective catalysts. Here, we report that acid‐treated, activated carbon‐supported boron preparedviaincipient wetness impregnation with boric acid (B/OAC) exhibits equal propylene selectivity and improved productivity (kgpropylene kgcat−1 hr−1) as compared to h‐BN. Characterization of the fresh and spent catalysts with infrared, Raman, X‐ray photoelectron, and solid‐state NMR spectroscopies reveals the presence of oxidized/hydrolyzed boron that is clustered on the surface of the support.  more » « less
Award ID(s):
1916809 1916775
PAR ID:
10251598
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemCatChem
Volume:
13
Issue:
16
ISSN:
1867-3880
Format(s):
Medium: X Size: p. 3611-3618
Size(s):
p. 3611-3618
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hypergolic reactions have emerged as a new synthetic approach enabling the rapid production of a diverse set of materials at ambient conditions. While hypergolic reactions bear several similarities to the well-established flame spray pyrolysis (FSP), the former has only recently been demonstrated as a viable approach to materials synthesis. Here we demonstrate a new pathway to 2D materials using hypergolic reactions and expand the gallery of nanomaterials synthesized hypergolically. More specifically, we demonstrate that ammonia borane complex, NH3BH3, or 4-fluoroaniline can react hypergolically with fuming nitric acid to form hexagonal boron nitride/fluorinated carbon nanosheets, respectively. Structural and chemical features were confirmed with x-ray diffraction, infrared, Raman, XPS spectroscopies and N2porosimetry measurements. Electron microscopy (SEM and TEM) along with atomic force microscopy (AFM) were used to characterize the morphology of the materials. Finally, we applied Hansen affinity parameters to quantify the surface/interfacial properties using their dispersibility in solvents. Of the solvents tested, ethylene glycol and ethanol exhibited the most stable dispersions of hexagonal boron nitride (h-BN). With respect to fluorinated carbon (FC) nanosheets, the suitable solvents for high stability dispersions were dimethylsulfoxide and 2-propanol. The dispersibility was quantified in terms of Hansen affinity parameters (δdph) = (16.6, 8.2, 21.3) and (17.4, 10.1, 14.5) MPa1/2for h-BN and FC, respectively. 
    more » « less
  2. Abstract Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3−x/2)(x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle. 
    more » « less
  3. ABSTRACT This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279 
    more » « less
  4. Abstract Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH. 
    more » « less
  5. Abstract The development of chemically recyclable polymers promises a closed‐loop approach towards a circular plastic economy but still faces challenges in structure/property diversity and depolymerization selectivity. Here we report the first successful coordination ring‐opening polymerization of 4,5‐trans‐cyclohexyl‐fused γ‐butyrolactone (M1) with lanthanide catalysts at room temperature, producing P(M1) withMnup to 89 kg mol−1, high thermal stability, and a linear or cyclic topology. The same catalyst also catalyses selective depolymerization of P(M1) back toM1exclusively at 120 °C. This coordination polymerization is also living, enabling the synthesis of well‐defined block copolymer. 
    more » « less