skip to main content


Title: SEQCROW : A ChimeraX bundle to facilitate quantum chemical applications to complex molecular systems
Abstract

We describe a bundle for UCSF ChimeraX called SEQCROW that provides advanced structure editing capabilities and quantum chemistry utilities designed for complex organic and organometallic compounds. SEQCROW includes graphical presets and bond editing tools that facilitate the generation of publication‐quality molecular structure figures while also allowing users to build molecular structures quickly and efficiently by mapping new ligands onto existing organometallic complexes as well as adding rings and substituents. Other capabilities include the ability to visualize vibrational modes and simulated IR spectra, to compute and visualize molecular descriptors including percent buried volume, ligand cone angles, and Sterimol parameters, to process thermochemical corrections from quantum mechanical computations, to generate input files for ORCA, Psi4, and Gaussian, and to run and manage computational jobs.

 
more » « less
Award ID(s):
1665407
NSF-PAR ID:
10448996
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
42
Issue:
24
ISSN:
0192-8651
Format(s):
Medium: X Size: p. 1750-1754
Size(s):
["p. 1750-1754"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel waspNasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adultN. vitripennisfemales using either ReMOT control (Receptor‐Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used theDrosophila melanogaster‐derived peptide ‘P2C’ fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of thecinnabargene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR‐applied genetic manipulation in this and other rising model organisms.

     
    more » « less
  2. Abstract

    Allostery is a fundamental property of proteins, which regulates biochemical information transfer between spatially distant sites. Here, we report on the critical role of molecular dynamics (MD) simulations in discovering the mechanism of allosteric communication within CRISPR‐Cas9, a leading genome editing machinery with enormous promises for medicine and biotechnology. MD revealed how allostery intervenes during at least three steps of the CRISPR‐Cas9 function: affecting DNA recognition, mediating the cleavage and interfering with the off‐target activity. An allosteric communication that activates concerted DNA cleavages was found to led through the L1/L2 loops, which connect the HNH and RuvC catalytic domains. The identification of these “allosteric transducers” inspired the development of novel variants of the Cas9 protein with improved specificity, opening a new avenue for controlling the CRISPR‐Cas9 activity. Discussed studies also highlight the critical role of the recognition lobe in the conformational activation of the catalytic HNH domain. Specifically, the REC3 region was found to modulate the dynamics of HNH by sensing the formation of the RNA:DNA hybrid. The role of REC3 was revealed to be particularly relevant in the presence of DNA mismatches. Indeed, interference of REC3 with the RNA:DNA hybrid containing mismatched pairs at specific positions resulted in locking HNH in an inactive “conformational checkpoint” conformation, thereby hampering off‐target cleavages. Overall, MD simulations established the fundamental mechanisms underlying the allosterism of CRISPR‐Cas9, aiding engineering strategies to develop new CRISPR‐Cas9 variants for improved genome editing.

    This article is categorized under:

    Structure and Mechanism > Computational Biochemistry and Biophysics

     
    more » « less
  3. Abstract

    The Molecular Sciences Software Institute's (MolSSI) Quantum Chemistry Archive (QCArchive) project is an umbrella name that covers both a central server hosted by MolSSI for community data and the Python‐based software infrastructure that powers automated computation and storage of quantum chemistry (QC) results. The MolSSI‐hosted central server provides the computational molecular sciences community a location to freely access tens of millions of QC computations for machine learning, methodology assessment, force‐field fitting, and more through a Python interface. Facile, user‐friendly mining of the centrally archived quantum chemical data also can be achieved through web applications found athttps://qcarchive.molssi.org. The software infrastructure can be used as a standalone platform to compute, structure, and distribute hundreds of millions of QC computations for individuals or groups of researchers at any scale. The QCArchiveInfrastructureis open‐source (BSD‐3C), code repositories can be found athttps://github.com/MolSSI, and releases can be downloaded via PyPI and Conda.

    This article is categorized under:

    Electronic Structure Theory > Ab Initio Electronic Structure Methods

    Software > Quantum Chemistry

    Data Science > Computer Algorithms and Programming

     
    more » « less
  4. Abstract

    Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.

     
    more » « less
  5. Abstract

    As the tools of computational quantum chemistry have continued to mature, larger and more complex molecular systems have become amenable to computational study. However, studies of these complex systems often require the execution of enormous numbers of computations, which can be a tedious and error‐prone process if done manually. We have developed a suite of free, open‐source tools to facilitate the automation of quantum chemistry workflows. These tools are collected under the organization QChASM (Quantum Chemistry Automation and Structure Manipulation) and include functionality for building and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic reactions, and a plug‐in for UCSF ChimeraX that provides a graphical interface for building complex molecular structures and representing output from quantum chemistry computations. These tools are described below, with a focus on the recent Python implementation of AaronTools.

    This article is categorized under:

    Structure and Mechanism > Reaction Mechanisms and Catalysis

    Software > Quantum Chemistry

     
    more » « less