skip to main content

Title: Two-Computer Pair Programming: Exploring a Feedback Intervention to improve Collaborative Talk in Elementary Students.
Background and Context: Researchers and practitioners have begun to incorporate collaboration in programming because of its reported instructional and professional benefits. However, younger students need guidance on how to collaborate in environments that require substantial interpersonal interaction and negotiation. Previous research indicates that feedback fosters students’ productive collaboration. Objective: This study employs an intervention to explore the role instructor-directed feedback plays on elementary students’ dyadic collaboration during 2-computer pair programming. Method: We used a multi-study design, collecting video data on students’ dyadic collaboration. Study 1 qualitatively explored dyadic collaboration by coding video transcripts of four dyads which guided the design of Study 2 that examined conversation of six dyads using MANOVA and non-parametric tests. Findings: Result from Study 2 showed that students receiving feed- back used productive conversation categories significantly higher than the control condition in the sample group considered. Results are discussed in terms of group differences in specific conversation categories. Implications: Our study highlights ways to support students in pair programming contexts so that they can maximize the benefits afforded through these experiences.
Authors:
; ; ; ; ; ;
Award ID(s):
1721000
Publication Date:
NSF-PAR ID:
10251737
Journal Name:
Computer Science Education
Page Range or eLocation-ID:
1 to 28
ISSN:
0899-3408
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and Context: Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self- efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. Objective: We wanted to explore upper elementary students’ self- efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming. Method: We implemented a five-week CS intervention with 4th and 5th grademore »students and collected self-report data on students’ CS attitudes and conceptual understanding, as well as transcripts of dyads talking while problem solving on a pair programming task. Findings: The students’ self-report data, organized by dyad, fell into three categories based on the dyad’s CS self-efficacy and conceptual understanding scores. Findings from within- and cross-case analyses revealed a range of ways the dyads’ self-efficacy and CS conceptual understanding affected their collaborative and regulated discourse. Implications: Recommendations for practitioners and researchers are provided. We suggest that upper elementary students learn about productive disagreement and how to peer model. Additionally, our findings may help practitioners with varied ways to group their students.« less
  2. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices thatmore »invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up.« less
  3. Purpose The purpose of the current study was to examine the lexical and pragmatic factors that may contribute to turn-by-turn failures in communication (i.e., miscommunication) that arise regularly in interactive communication. Method Using a corpus from a collaborative dyadic building task, we investigated what differentiated successful from unsuccessful communication and potential factors associated with the choice to provide greater lexical information to a conversation partner. Results We found that more successful dyads' language tended to be associated with greater lexical density, lower ambiguity, and fewer questions. We also found participants were more lexically dense when accepting and integrating a partner'smore »information (i.e., grounding) but were less lexically dense when responding to a question. Finally, an exploratory analysis suggested that dyads tended to spend more lexical effort when responding to an inquiry and used assent language accurately—that is, only when communication was successful. Conclusion Together, the results suggest that miscommunication both emerges and benefits from ambiguous and lexically dense utterances.« less
  4. Background/Context: Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field. Purpose/Focus of Study: This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-schoolmore »program, first as students and then as cofacilitators teaching CPM practices to other middle school peers. Setting: An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1. Research Design: This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices. Findings: Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with. Conclusions/Recommendations: Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.« less
  5. Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies.

    Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected amore »total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement.

    Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay.

    Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers.

    « less