We consider Hilbert-type functions associated with finitely generated inversive difference field extensions and systems of algebraic difference equations in the case when the translations are assigned positive integer weights. We prove that such functions are quasi-polynomials that can be represented as alternating sums of Ehrhart quasi-polynomials of rational conic polytopes. In particular, we generalize the author's results on difference dimension polynomials and their invariants to the case of inversive difference fields with weighted basic automorphisms. 
                        more » 
                        « less   
                    
                            
                            Finiteness Properties of Affine Difference Algebraic Groups
                        
                    
    
            Abstract We establish several finiteness properties of groups defined by algebraic difference equations. One of our main results is that a subgroup of the general linear group defined by possibly infinitely many algebraic difference equations in the matrix entries can indeed be defined by finitely many such equations. As an application, we show that the difference ideal of all difference algebraic relations among the solutions of a linear differential equation is finitely generated. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1760448
- PAR ID:
- 10251750
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a difference algebraic technique for the evaluation of the Einstein's strength of quasi-linear partial difference equations and some systems of such equations. Our approach is based on the properties of difference dimension polynomials that express the Einstein's strength and on the characteristic set method for computing such polynomials. The obtained results are applied to the comparative analysis of difference schemes for some chemical reaction-diffusion equations.more » « less
- 
            We introduce a new type of characteristic sets of difference polynomials using a generalization of the concept of effective order to the case of partial difference polynomials and a partition of the basic set of translations σ. Using properties of these characteristic sets, we prove the existence and outline a method of computation of a multivariate dimension polynomial of a finitely generated difference field extension that describes the transcendence degrees of intermediate fields obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of σ are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than previously known difference dimension polynomials. In particular, a dimension polynomial of the new type associated with a system of algebraic difference equations gives more information about the system than the classical univariate difference dimension polynomial.more » « less
- 
            We provide maximal 𝐿𝑝-regularity up to the level 𝑇 < ∞ or 𝑇 = ∞ of an abstract evolution equation in Banach space, which captures boundary closed-loop parabolic systems, defined on a bounded multidimensional domain, with finitely many boundary control vectors and finitely many boundary sensors/actuators. Illustrations given include classical parabolic equations as well as Navier-Stokes equations in 𝐿𝑝(Ω) or 𝐿𝑞 𝜎(Ω), respectively.more » « less
- 
            null (Ed.)Abstract Let $$K$$ be an algebraically closed field of prime characteristic $$p$$ , let $$X$$ be a semiabelian variety defined over a finite subfield of $$K$$ , let $$\unicode[STIX]{x1D6F7}:X\longrightarrow X$$ be a regular self-map defined over $$K$$ , let $$V\subset X$$ be a subvariety defined over $$K$$ , and let $$\unicode[STIX]{x1D6FC}\in X(K)$$ . The dynamical Mordell–Lang conjecture in characteristic $$p$$ predicts that the set $$S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$$ is a union of finitely many arithmetic progressions, along with finitely many $$p$$ -sets, which are sets of the form $$\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$$ for some $$m\in \mathbb{N}$$ , some rational numbers $$c_{i}$$ and some non-negative integers $$k_{i}$$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $$X$$ is an algebraic torus, we can prove the conjecture in two cases: either when $$\dim (V)\leqslant 2$$ , or when no iterate of $$\unicode[STIX]{x1D6F7}$$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $$X$$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    