skip to main content


Title: Band Engineering of Dirac Semimetals Using Charge Density Waves
Abstract

New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non‐ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non‐symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46Te1.48is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.

 
more » « less
Award ID(s):
1942447 2011750
NSF-PAR ID:
10449502
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
30
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square‐net materials with clean, linearly dispersing bands show potential to circumvent this issue. CeSbTe, a square‐net material, features multiple magnetic‐field‐controllable topological phases. Here, it is shown that in this material, even higher degrees of tunability can be achieved by changing the electron count at the square‐net motif. Increased electron filling results in structural distortion and formation of charge density waves (CDWs). The modulation wave‐vector evolves continuously leading to a region of multiple discrete CDWs and a corresponding complex “Devil's staircase” magnetic ground state. A series of fractionally quantized magnetization plateaus is observed, which implies direct coupling between CDW and a collective spin‐excitation. It is further shown that the CDW creates a robust idealized nonsymmorphic Dirac semimetal, thus providing access to topological systems with rich magnetism.

     
    more » « less
  2. Abstract

    Parity‐time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle‐resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd2As2. As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time‐reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from thec‐axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

     
    more » « less
  3. Abstract

    Nodal‐line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type‐I and type‐II Weyl semimetals, there are two types of NLSs. The type‐I NLS phase has been proposed and realized in many compounds, whereas the exotic type‐II NLS phase that strongly violates Lorentz symmetry has remained elusive. First‐principles calculations show that Mg3Bi2is a material candidate for the type‐II NLS. The band crossing is close to the Fermi level and exhibits the type‐II nature of the nodal line in this material. Spin–orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2that yields the type‐II nodal line. Based on this prediction, Mg3Bi2single crystals are synthesized and the presence of the type‐II nodal lines in the material is confirmed. The angle‐resolved photoemission spectroscopy measurements agree well with the first‐principles results below the Fermi level and thus strongly suggest Mg3Bi2as an ideal material platform for studying the as‐yet unstudied properties of type‐II nodal‐line semimetals.

     
    more » « less
  4. Abstract

    Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications.

     
    more » « less
  5. Abstract

    Many topological semimetals are known to exhibit exceptional electronic properties, which are the fundamental basis for design of novel devices and further applications. Materials containing the structural motif of a square net are known to frequently be topological semimetals. In this work, the synthesis and structural characterization of the square‐net‐based magnetic topological semimetal candidates GdSbxTe2−xδ(0,δindicating the vacancy level) are reported. The structural evolution of the series with Sb substitution is studied, finding a transition between a simple tetragonal square‐net structure to complex superstructure formations due to the presence of charge density waves. The structural modulations coincide with a significant modification of the magnetic order. This work thus establishes GdSbxTe2−xδas a platform to study the interplay between crystal symmetry, band filling, charge density wave, and magnetism in a topological semimetal candidate.

     
    more » « less