skip to main content


Title: Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.  more » « less
Award ID(s):
1849206 1736255
NSF-PAR ID:
10251804
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Microorganisms
Volume:
9
Issue:
1
ISSN:
2076-2607
Page Range / eLocation ID:
113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The Spacecraft Assembly Facility (SAF) at the NASA’s Jet Propulsion Laboratory is the primary cleanroom facility used in the construction of some of the planetary protection (PP)-sensitive missions developed by NASA, including the Mars 2020 Perseverance Rover that launched in July 2020. SAF floor samples (n=98) were collected, over a 6-month period in 2016 prior to the construction of the Mars rover subsystems, to better understand the temporal and spatial distribution of bacterial populations (total, viable, cultivable, and spore) in this unique cleanroom.

    Results

    Cleanroom samples were examined for total (living and dead) and viable (living only) microbial populations using molecular approaches and cultured isolates employing the traditional NASA standard spore assay (NSA), which predominantly isolated spores. The 130 NSA isolates were represented by 16 bacterial genera, of which 97% were identified as spore-formers via Sanger sequencing. The most spatially abundant isolate wasBacillus subtilis, and the most temporally abundant spore-former wasVirgibacillus panthothenticus. The 16S rRNA gene-targeted amplicon sequencing detected 51 additional genera not found in the NSA method. The amplicon sequencing of the samples treated with propidium monoazide (PMA), which would differentiate between viable and dead organisms, revealed a total of 54 genera: 46 viable non-spore forming genera and 8 viable spore forming genera in these samples. The microbial diversity generated by the amplicon sequencing corresponded to ~86% non-spore-formers and ~14% spore-formers. The most common spatially distributed genera wereSphinigobium,Geobacillus, andBacilluswhereas temporally distributed common genera wereAcinetobacter,Geobacilllus, andBacillus. Single-cell genomics detected 6 genera in the sample analyzed, with the most prominent beingAcinetobacter.

    Conclusion

    This study clearly established that detecting spores via NSA does not provide a complete assessment for the cleanliness of spacecraft-associated environments since it failed to detect several PP-relevant genera that were only recovered via molecular methods. This highlights the importance of a methodological paradigm shift to appropriately monitor bioburden in cleanrooms for not only the aeronautical industry but also for pharmaceutical, medical industries, etc., and the need to employ molecular sequencing to complement traditional culture-based assays.

     
    more » « less
  2. null (Ed.)
    One of the best indicators of colony health for the European honey bee ( Apis mellifera ) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known “core” honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella ) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted. 
    more » « less
  3. The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21  % (clade T), and 61.24–64.83  % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus).

     
    more » « less
  4. Chi Fru, Ernest ; Chik, Alex ; Colwell, Fredrick ; Dittrich, Maria ; Engel, Annette ; Keenan, Sarah ; Meckenstock, Rainer ; Omelon, Christopher ; Purkamo, Lotta ; Weisener, Chris (Ed.)

    Roots are common features in basaltic lava tube caves on the island of Hawai‘i. For the past 50 years, new species of cave-adapted invertebrates, including cixiid planthoppers, crickets, thread-legged bugs, and spiders, have been discovered from root patches in lava tubes on different volcanoes and across variable climatic conditions. Assessing vegetation on the surface above lava tube passages, as well as genetic characterization of roots from within lava tubes, suggest that most roots belong to the native pioneer tree, ‘ōhi‘a lehua (Metrosideros polymorpha). Planthoppers are the primary consumers of sap at the base of the subsurface food web. However, root physicochemistry and rhizobiome microbial diversity and functional potential have received little attention. This study focuses on characterizing the ‘ōhi‘a rhizobiome, accessed from free-hanging roots inside lava tubes. Using these results, we can begin to evaluate the development and evolution of plant-microbe-invertebrate relationships.

    We explored lava tubes formed in flows of differing elevations and ages, from about 140 to 3000 years old, on Mauna Loa, Kīlauea, and Hualālai volcanoes on Hawai‘i Island. Invertebrate diversity was evaluated from root galleries and non-root galleries, in situ fluid physicochemistry was measured, and root and bare rock fluids (e.g., water, sap) were collected to determine major ion concentrations, as well as non-purgeable organic carbon (NPOC) and total nitrogen (TN) content. To verify root identity, DNA was extracted, and three sets of primers were used. After screening for onlyMetrosiderosspp., the V4 region of the 16S rRNA gene was sequenced and taxonomy was assigned.

    Root fluids were viscous and ranged in color from clear to yellow to reddish orange. Root fluids had 2X to 10X higher major ion concentrations compared to rock water. The average root NPOC and TN concentrations were 192 mg/L and 5.2 mg/L, respectively, compared to rock water that had concentrations of 6.8 mg/L and 1.8 mg/L, respectively. Fluids from almost 300 root samples had pH values that ranged from 2.2 to 5.6 (average pH 4.63) and were lower than rock water (average pH 6.39). Root fluid pH was comparable to soil pH from montane wet forests dominated by ‘ōhi‘a (Selmants et al. 2016), which can grow in infertile soil with pH values as low as 3.6. On Hawai‘i, rain water pH averages 5.2 at sea level and systematically decreases with elevation to pH 4.3 at 2500 m (Miller and Yoshinaga 2012), but root fluid pH did not correlate with elevation, temperature, relative humidity, inorganic and organic constituents, or age of flow. Root fluid acidity is likely due to concentrated organic compounds, sourced as root exudates, and this habitat is acidic for the associated invertebrates.

    From 62 root samples, over 66% were identified to the genusMetrosideros. A few other identifications of roots from lava tube systems where there had been extensive clear-cutting and ranching included monkey pod tree, coconut palm,Ficusspp., and silky oak.

    The 16S rRNA gene sequence surveys revealed that root bacterial communities were dominated by few groups, including Burkholderiaceae, as well as Acetobacteraceae, Sphingomonadaceae, Acidobacteriaceae, Gemmataceae, Xanthobacteraceae, and Chitinophagaceae. However, most of the reads could not be classified to a specific genus, which suggested that the rhizobiome harbor novel diversity. Diversity was higher from wetter climates. The root communities were distinct from those described previously from ‘ōhi‘a flowers and leaves (Junker and Keller 2015) and lava tube rocky surfaces (Hathaway et al. 2014) where microbial groups were specifically presumed capable of heterotrophy, methanotrophy, diazotrophy, and nitrification. Less can be inferred for the rhizobiome metabolism, although most taxa are likely aerobic heterotrophs. Within the Burkholderiaceae, there were high relative abundances of sequences affiliated with the genusParaburkholderia, which includes known plant symbionts, as well as the acidophilic generaAcidocellaandAcidisomafrom the Acetobacteraceae, which were retrieved predominately from caves in the oldest lava flows that also had the lowest root pH values. It is likely that the bacterial groups are capable of degrading exudates and providing nutritional substrates for invertebrate consumers that are not provided by root fluids (i.e., phloem) alone.

    As details about the biochemistry of ‘ōhi‘a have been missing, characterizing the rhizobiome from lava tubes will help to better understand potential plant-microbe-invertebrate interactions and ecological and evolutionary relationships through time. In particular, the microbial rhizobiome may produce compounds used by invertebrates nutritionally or that affect their behavior, and changes to the rhizobiome in response to environmental conditions may influence invertebrate interactions with the roots, which could be important to combat climate change effects or invasive species introductions.

     
    more » « less
  5. Senko, John M. (Ed.)

    In commercial large-scale aquaria, controlling levels of nitrogenous compounds is essential for macrofauna health. Naturally occurring bacteria are capable of transforming toxic nitrogen species into their more benign counterparts and play important roles in maintaining aquaria health. Nitrification, the microbially-mediated transformation of ammonium and nitrite to nitrate, is a common and encouraged process for management of both commercial and home aquaria. A potentially competing microbial process that transforms ammonium and nitrite to dinitrogen gas (anaerobic ammonium oxidation [anammox]) is mediated by some bacteria within the phylum Planctomycetes. Anammox has been harnessed for nitrogen removal during wastewater treatment, as the nitrogenous end product is released into the atmosphere rather than in aqueous discharge. Whether anammox bacteria could be similarly utilized in commercial aquaria is an open question. As a first step in assessing the viability of this practice, we (i) characterized microbial communities from water and sand filtration systems for four habitats at the Tennessee Aquarium and (ii) examined the abundance and anammox potential of Planctomycetes using culture-independent approaches. 16S rRNA gene amplicon sequencing revealed distinct, yet stable, microbial communities and the presence of Planctomycetes (~1–15% of library reads) in all sampled habitats. Preliminary metagenomic analyses identified the genetic potential for multiple complete nitrogen metabolism pathways. However, no known genes diagnostic for the anammox reaction were found in this survey. To better understand the diversity of this group of bacteria in these systems, a targeted Planctomycete-specific 16S rRNA gene-based PCR approach was used. This effort recovered amplicons that share <95% 16S rRNA gene sequence identity to previously characterized Planctomycetes, suggesting novel strains within this phylum reside within aquaria.

     
    more » « less