skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eigenvalues of graphs and spectral Moore theorems (Research on algebraic combinatorics, related groups and algebras)
In this paper, we describe some recent spectral Moore theorems related to determining the maximum order of a connected graph of given valency and second eigenvalue. We show how these spectral Moore theorems have applications in Alon-Boppana theorems for regular graphs and in the classical degree-diameter /Moore problem.  more » « less
Award ID(s):
1816003
PAR ID:
10251861
Author(s) / Creator(s):
Date Published:
Journal Name:
RIMS kokyuroku bessatsu
Volume:
2169
ISSN:
1881-6193
Page Range / eLocation ID:
106-119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We give an explicit point-set construction of the Dennis trace map from the K-theory of endomorphisms K End(C) to topological Hochschild homology THH(C) for any spectral Waldhausen category C. We describe the necessary technical foundations, most notably a well-behaved model for the spectral category of diagrams in C indexed by an ordinary category via the Moore end. This is applied to define a version of Waldhausen’s S•-construction for spectral Waldhausen categories, which is central to this account of the Dennis trace map. Our goals are both convenience and transparency—we provide all details except for a proof of the additivity theorem for THH, which is taken for granted—and the exposition is concerned not with originality of ideas, but rather aims to provide a useful resource for learning about the Dennis trace and its underlying machinery. 
    more » « less
  2. We give an explicit point-set construction of the Dennis trace map from the K-theory of endomorphisms K End(C) to topological Hochschild homology THH(C) for any spectral Waldhausen category C. We describe the necessary technical foundations, most notably a well-behaved model for the spectral category of diagrams in C indexed by an ordinary category via the Moore end. This is applied to define a version of Waldhausen’s S•-construction for spectral Waldhausen categories, which is central to this account of the Dennis trace map. Our goals are both convenience and transparency—we provide all details except for a proof of the additivity theorem for THH, which is taken for granted—and the exposition is concerned not with originality of ideas, but rather aims to provide a useful resource for learning about the Dennis trace and its underlying machinery. 
    more » « less
  3. Smooth and proper dg-algebras have an Euler class valued in the Hochschild homology of the algebra. This Euler class is worthy of this name since it satisfies many familiar properties including compatibility with the pairing on the Hochschild homology of the algebra and that of its opposite. This compatibility is the Riemann–Roch theorems of [21, 14]. In this paper, we prove a broad generalization of these Riemann–Roch theorems. We generalize from the bicategory of dg-algebras and their bimodules to symmetric monoidal bicategories and from the Euler class to traces of non-identity maps. Our generalization also implies spectral Riemann–Roch theorems. We regard this result as an instantiation of a 2-dimensional generalized cobordism hypothesis. This perspective draws the result close to many others that generalize results about Euler characteristics and classes to bicategorical traces. 
    more » « less
  4. We propose a frustration-free model for the Moore-Read quantum Hall state on sufficiently thin cylinders with circumferences ≲7 magnetic lengths. While the Moore-Read Hamiltonian involves complicated long-range interactions between triplets of electrons in a Landau level, our effective model is a simpler one-dimensional chain of qubits with deformed Fredkin gates. We show that the ground state of the Fredkin model has high overlap with the Moore-Read wave function and accurately reproduces the latter's entanglement properties. Moreover, we demonstrate that the model captures the dynamical response of the Moore-Read state to a geometric quench, induced by suddenly changing the anisotropy of the system. We elucidate the underlying mechanism of the quench dynamics and show that it coincides with the linearized bimetric field theory. The minimal model introduced here can be directly implemented as a first step towards quantum simulation of the Moore-Read state, as we demonstrate by deriving an efficient circuit approximation to the ground state and implementing it on an IBM quantum processor. 
    more » « less
  5. Abstract We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous quadratic forms. We prove such results for fixed quadratic forms and generic shifts. Our results complement our previous paper [13] where we considered generic forms and fixed shifts. In this paper, we use ergodic theorems and in particular we establish a strong spectral gap with effective bounds for some representations of orthogonal groups, which do not possess Kazhdan’s property $(T)$. 
    more » « less