skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5 , a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.  more » « less
Award ID(s):
1764421
PAR ID:
10251898
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Irazoqui, Javier E.
Date Published:
Journal Name:
PLOS Genetics
Volume:
16
Issue:
11
ISSN:
1553-7404
Page Range / eLocation ID:
e1008986
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Regulation of the essential trace element zinc is necessary to avoid the toxic consequences caused by too little or too much of this metal (Vallee and Falchuk 1993; Rosen 2006). The zinc-response pathway has been extensively studied in the nematode roundworm Caenorhabditis elegans and several genes have been discovered that function to modulate sensitivity to both high and low zinc concentrations (Dietrich et al. 2016). Recently, we identified a quantitative trait locus (QTL) on the center of chromosome V, indicating that natural genetic variation between the laboratory strain, N2, and a genetically divergent wild isolate from Hawaii, CB4856, contributes to differential responses to excess zinc (Evans et al. 2020). 
    more » « less
  2. Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations. 
    more » « less
  3. Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most organisms and has broad implications for medicine and agriculture. The identification of the molecular mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our understanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1 for some of the eight chemotherapeutics. Using deletion strains created by genome editing, we show that scb-1 , which was previously implicated in response to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation analysis to identify causal genes. 
    more » « less
  4. Fusarium head blight (FHB) is a devastating disease in wheat. The use of resistant germplasm from diverse sources can significantly improve resistance to the disease. “Surpresa” is a Brazilian spring wheat cultivar with moderate FHB resistance, different from currently used sources. In this study, we aimed to identify and map the genetic loci for FHB resistance in Surpresa. A mapping population consisting of 187 recombinant inbred lines (RILs) was developed from a cross between Surpresa and a susceptible spring wheat cultivar, “Wheaton.” The population was evaluated for FHB by the point-inoculation method in three greenhouse experiments and four field trials between 2016 and 2018. Mean disease severity for Surpresa and Wheaton was 41.2 and 84.9% across the 3 years of experiments, ranging from 30.3 to 59.1% and 74.3 to 91.4%, respectively. The mean FHB severity of the NILs was 57%, with an overall range from 7 to 100%, suggesting transgressive segregation in the population. The population was genotyped using a two-enzyme genotyping-by-sequencing approach, and a genetic map was constructed with 5,431 single nucleotide polymorphism (SNP) markers. Four QTL for type II resistance were detected on chromosomes 3A, 5A, 6A, and 7A, explaining 10.4–14.4% of the total phenotypic variation. The largest effect QTL was mapped on chromosome 7A and explained 14.4% of the phenotypic variation; however, it co-localized with a QTL governing the days to anthesis trait. A QTL for mycotoxin accumulation was also detected on chromosome 1B, explaining 18.8% of the total phenotypic variation. The QTL for FHB resistance identified in the study may diversify the FHB resistance gene pool and increase overall resistance to the disease in wheat. 
    more » « less
  5. Spontaneous epimutations—stochastic changes in cytosine methylation—can persist across generations in plants and are thought to contribute to phenotypic variation. Although epimutations are increasingly studied for their potential long-term effects, it remains unclear why their accumulation varies across genotypes. Here, we tracked DNA methylation across ten generations in ~400 mutation accumulation lineages derived from ~70ArabidopsisLer × Cvi recombinant inbred lines. Treating epimutation rates as quantitative molecular traits, we mapped a major QTL to a Cvi-derived deletion nearVIM2andVIM4, two genes involved in CG methylation (mCG) maintenance. We show that this deletion rapidly reduces genome-wide methylation to a lower steady-state and compromises mCG maintenance fidelity across generations, resulting in a ~1.5-fold increase in epimutation rates. Genotypes with elevated rates exhibited accelerated epigenetic drift and phenotypic divergence. Our findings support a punctuated-equilibrium model of mCG evolution, in which sudden disruptions to methylation homeostasis can destabilize epigenetic inheritance over longer time-scales. 
    more » « less