skip to main content


Title: Combinatorial phosphorylation modulates the structure and function of the G protein γ subunit in yeast

Intrinsically disordered regions (IDRs) in proteins are often targets of combinatorial posttranslational modifications, which serve to regulate protein structure and function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits, which are essential components of heterotrimeric G proteins, are intrinsically disordered, phosphorylation-dependent determinants of G protein signaling. Here, we found that the yeast Gγ subunit Ste18 underwent combinatorial, multisite phosphorylation events within its N-terminal IDR. G protein–coupled receptor (GPCR) activation and osmotic stress induced phosphorylation at Ser7, whereas glucose and acid stress induced phosphorylation at Ser3, which was a quantitative indicator of intracellular pH. Each site was phosphorylated by a distinct set of kinases, and phosphorylation of one site affected phosphorylation of the other, as determined through exposure to serial stimuli and through phosphosite mutagenesis. Last, we showed that phosphorylation resulted in changes in IDR structure and that different combinations of phosphorylation events modulated the activation rate and amplitude of the downstream mitogen-activated protein kinase Fus3. These data place Gγ subunits among intrinsically disordered proteins that undergo combinatorial posttranslational modifications that govern signaling pathway output.

 
more » « less
Award ID(s):
1764406
NSF-PAR ID:
10251929
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Signaling
Volume:
14
Issue:
688
ISSN:
1945-0877
Page Range / eLocation ID:
Article No. eabd2464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Protein intrinsically disordered regions (IDRs) are often targets of combinatorial post-translational modifications (PTMs) that serve to regulate protein structure and/or function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits – essential components of heterotrimeric G protein complexes – are intrinsically disordered, highly phosphorylated governors of G protein signaling. Here, we demonstrate that the yeast Gγ Ste18 undergoes combinatorial, multi-site phosphorylation within its N-terminal IDR. Phosphorylation at S7 is responsive to GPCR activation and osmotic stress while phosphorylation at S3 is responsive to glucose stress and is a quantitative indicator of intracellular pH. Each site is phosphorylated by a distinct set of kinases and both are also interactive, such that phosphomimicry at one site affects phosphorylation on the other. Lastly, we show that phosphorylation produces subtle yet clear changes in IDR structure and that different combinations of phosphorylation modulate the activation rate and amplitude of the scaffolded MAPK Fus3. These data place Gγ subunits among the growing list of intrinsically disordered proteins that exploit combinatorial post-translational modification to govern signaling pathway output. 
    more » « less
  2. Summary

    Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the soleor allgenes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations ofandgenes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments.

     
    more » « less
  3. Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a “divide-and-conquer” approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.

     
    more » « less
  4. Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms. 
    more » « less
  5. <bold>Summary</bold>

    Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.

     
    more » « less