skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Charles Fox Guitar-Building Method, Part Three
In this episode of the landmark series, the back and top plates are braced and glued to the rim to form the body of the guitar. The body is then bound and purfled using Fox’ distinctive method of fitting everything dry, taping it in place, and running superglue into the seams.  more » « less
Award ID(s):
1700531
PAR ID:
10252110
Author(s) / Creator(s):
Date Published:
Journal Name:
American lutherie
ISSN:
1041-7176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size ( i.e. , body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels. 
    more » « less
  2. Lenoir, Jonathan (Ed.)
    Abstract AimSquamate fitness is affected by body temperature, which in turn is influenced by environmental temperatures and, in many species, by exposure to solar radiation. The biophysical drivers of body temperature have been widely studied, but we lack an integrative synthesis of actual body temperatures experienced in the field, and their relationships to environmental temperatures, across phylogeny, behaviour and climate. LocationGlobal (25 countries on six continents). TaxaSquamates (210 species, representing 25 families). MethodsWe measured the body temperatures of 20,231 individuals of squamates in the field while they were active. We examined how body temperatures vary with substrate and air temperatures across taxa, climates and behaviours (basking and diel activity). ResultsHeliothermic lizards had the highest body temperatures. Their body temperatures were the most weakly correlated with substrate and air temperatures. Body temperatures of non‐heliothermic diurnal lizards were similar to heliotherms in relation to air temperature, but similar to nocturnal species in relation to substrate temperatures. The correlation of body temperature with air and substrate temperatures was stronger in diurnal snakes and non‐heliothermic lizards than in heliotherms. Body‐substrate and body‐air temperature correlations varied with mean annual temperatures in all diurnal squamates, especially in heliotherms. Thermal relations vary with behaviour (heliothermy, nocturnality) in cold climates but converge towards the same relation in warm climates. Non‐heliotherms and nocturnal species body temperatures are better explained by substrate temperature than by air temperature. Body temperature distributions become left‐skewed in warmer‐bodied species, especially in colder climates. Main ConclusionsSquamate body temperatures, their frequency distributions and their relation to environmental temperature, are globally influenced by behavioural and climatic factors. For all temperatures and climates, heliothermic species' body temperatures are consistently higher and more stable than in other species, but in regions with warmer climate these differences become less pronounced. A comparable variation was found in non‐heliotherms, but in not nocturnal species whose body temperatures were similar to air and substrate irrespective of the macroclimatic context. 
    more » « less
  3. Sensors in and around the environment becoming ubiquitous has ushered in the concept of smart animal agriculture which has the potential to greatly improve animal health and productivity using the concepts of remote health monitoring which is a necessity in times when there is a great demand for animal products. The data from in and around animals gathered from sensors dwelling in animal agriculture settings have made farms a part of the Internet of Things space. This has led to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of any such farm network where the data from inside the body of the animals is to be communicated to a node dwelling outside the body of the animal. In this paper, we use novel experimental methods to calculate the channel loss of signal at sub-GHz frequencies of 100 - 900 MHz to characterize the in-body to out-of-body communication channel in large animals. A first-of-its-kind 3D bovine modeling is done with computer vision techniques for detailed morphological features of the animal body is used to perform Finite Element Method based Electromagnetic simulations. The results of the simulations are experimentally validated to come up with a complete channel modeling methodology for in-body to out-of-body animal body communication. The experimentally validated 3D bovine model is made available publicly on https://github.com/SparcLab/Bovine-FEM-Model.git GitHub. The results illustrate that an in-body to out-of-body communication channel is realizable from the rumen to the collar of ruminants with $$\leq {90}~{\rm dB}$$ path loss at sub-GHz frequencies ( $100-900~MHz$ ) making communication feasible. The developed methodology has been illustrated for ruminants but can also be used for other related in-body to out-of-body studies. Using the developed channel modeling technique, an efficient communication architecture can be formed for in-body to out-of-body communication in animals which paves the way for the design and development of future smart animal agriculture systems. 
    more » « less
  4. ABSTRACT Whereas many fishes swim steadily, zebrafish regularly exhibit unsteady burst-and-coast swimming, which is characterized by repeated sequences of turns followed by gliding periods. Such a behavior offers the opportunity to investigate the hypothesis that negative mechanical work occurs in posterior regions of the body during early phases of the turn near the time of maximal body curvature. Here, we used a modified particle image velocimetry (PIV) technique to obtain high-resolution flow fields around the zebrafish body during turns. Using detailed swimming kinematics coupled with body surface pressure computations, we estimated fluid–structure interaction forces and the pattern of forces and torques along the body during turning. We then calculated the mechanical work done by each body segment. We used estimated patterns of positive and negative work along the body to evaluate the hypothesis (based on fish midline kinematics) that the posterior body region would experience predominantly negative work. Between 10% and 20% of the total mechanical work was done by the fluid on the body (negative work), and negative work was concentrated in the anterior and middle areas of the body, not along the caudal region. Energetic costs of turning were calculated by considering the sum of positive and negative work and were compared with previous metabolic estimates of turning energetics in fishes. The analytical workflow presented here provides a rigorous way to quantify hydrodynamic mechanisms of fish locomotion and facilitates the understanding of how body kinematics generate locomotor forces in freely swimming fishes. 
    more » « less
  5. Abstract Studies of vertebrate feeding have predominantly focused on the bones and muscles of the head, not the body. Yet, postcranial musculoskeletal structures like the spine and pectoral girdle are anatomically linked to the head, and may also have mechanical connections through which they can contribute to feeding. The feeding roles of postcranial structures have been best studied in ray-finned fishes, where the body muscles, vertebral column, and pectoral girdle attach directly to the head and help expand the mouth during suction feeding. Therefore, I use the anatomy and motion of the head–body interface in these fishes to develop a mechanical framework for studying postcranial functions during feeding. In fish the head and body are linked by the vertebral column, the pectoral girdle, and the body muscles that actuate these skeletal systems. The morphology of the joints and muscles of the cranio-vertebral and hyo-pectoral interfaces may determine the mobility of the head relative to the body, and ultimately the role of these interfaces during feeding. The postcranial interfaces can function as anchors during feeding: the body muscles and joints minimize motion between the head and body to stabilize the head or transmit forces from the body. Alternatively, the postcranial interfaces can be motors: body muscles actuate motion between the head and body to generate power for feeding motions. The motor function is likely important for many suction-feeding fishes, while the anchor function may be key for bite- or ram-feeding fishes. This framework can be used to examine the role of the postcranial interface in other vertebrate groups, and how that role changes (or not) with morphology and feeding behaviors. Such studies can expand our understanding of muscle function, as well as the evolution of vertebrate feeding behaviors across major transitions such as the invasion of land and the emergence of jaws. 
    more » « less