skip to main content


Title: Trait-based filtering mediates the effects of realistic biodiversity losses on ecosystem functioning

Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend not only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

 
more » « less
NSF-PAR ID:
10252211
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
26
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2022757118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Positive biodiversity–ecosystem functioning (BEF) relationships observed in experiments can be challenging to identify in natural communities. Freshwater animal communities are disproportionately harmed by global change that results in accelerated species loss. Understanding how animal-mediated ecosystems functions may change as a result of global change can help determine whether biodiversity or species-specific conservation will be effective at maintaining function. Unionid mussels represent half of imperiled species in freshwater ecosystems globally and perform important ecological functions such as water filtration and nutrient recycling. We explored BEF relationships for 22 naturally assembled mussel aggregations spanning three river basins. We used the Price equation to partition the contributions of species richness, composition, and context dependent interactions to two functions of interests: spatially-explicit standing-stock biomass (indirect proxy for function) and species-specific nitrogen (N) excretion rates (direct measure of N recycling). Random and non-random species loss each reduced biomass and N recycling. Many rare species with low contributions to biomass contributed to standing-stock biomass in all basins. Widespread species had variable function across sites, such that context dependent effects (CDEs) outweighed richness effects on standing-stock biomass in two basins, and were similar to richness effects in the third. Richness effects outweighed CDEs for N recycling. Thus, many species contributed a low proportion to overall N-recycling; a product we attribute to the high evenness and functional effect trait diversity associated with these communities. The loss of low-functioning species reduced the function of persisting species. This novel result using observational data adds evidence that positive species interactions, such as interspecific facilitation, may be a mechanism by which biodiversity enhances ecosystem functions. Our work stresses the importance of evaluating species-specific contributions to functions in diverse systems, such as nutrient cycling when maintaining specific animal-mediated functions is a management goal because indirect proxies may not completely characterize BEF relationships. 
    more » « less
  2. A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust. 
    more » « less
  3. Abstract Aim

    Tropical elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait‐based scaling theory, including whether observed shifts in forest traits across a broad tropical temperature gradient are consistent with local phenotypic optima and adaptive compensation for temperature.

    Location

    An elevation gradient spanning 3,300 m and consisting of thousands of tropical tree trait measures taken from 16 1‐ha tropical forest plots in southern Perú, where gross and net primary productivity (GPP and NPP) were measured.

    Time period

    April to November 2013.

    Major taxa studied

    Plants; tropical trees.

    Methods

    We developed theory to scale from traits to communities and ecosystems and tested several predictions. We assessed the covariation between climate, traits, biomass and GPP and NPP. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within 16 forests with simultaneous measures of ecosystem net and gross primary productivity.

    Results

    Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass, but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependence appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature.

    Main conclusions

    The observed shift in traits of trees that dominate in more cold environments is consistent with an ‘adaptive/acclimatory’ compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed overly peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance attributable to warming from climate change. Trait‐based scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of tropical forests.

     
    more » « less
  4. A thorough understanding of how communities respond to extreme changes, such as biotic invasions, is essential to manage ecosystems today. Here we constructed fossil food webs to identify changes in Late Ordovician (Katian) shallow-marine paleocommunity structure and functioning before and after the Richmondian invasion, a well-documented ancient invasion. Food webs were compared using descriptive metrics and cascading extinction on graphs models. Richness at intermediate trophic levels was underrepresented when using only data from the Paleobiology Database relative to museum collections, resulting in a spurious decrease in modeled paleocommunity stability. Therefore, museum collections and field sampling may provide more reliable sources of data for the reconstruction of trophic organization in comparison to online data repositories. The invasion resulted in several changes in ecosystem dynamics. Despite topological similarities between pre- and postinvasion food webs, species loss occurred corresponding to a minor decrease in functional groups. Invaders occupied all of the preinvasion functional guilds, with the exception of four incumbent guilds that were lost and one new guild, corroborating the notion that invaders replace incumbents and fill preexisting niche space. Overall, models exhibited strong resistance to secondary extinction, although the postinvasion community had a lower threshold of collapse and more variable response to perturbation. We interpret these changes in dynamics as a decrease in stability, despite similarities in overall structure. Changes in food web structure and functioning resulting from the invasion suggest that conservation efforts may need to focus on preserving functional diversity if more diverse ecosystems are not inherently more stable. 
    more » « less
  5. Abstract

    Relationships between biodiversity and ecosystem functioning depend on the processes structuring community assembly. However, predicting biodiversity‐ecosystem functioning (BEF) relationships based on community assembly remains challenging because assembly outcomes are often contingent on history and the consequences of history for ecosystem functions are poorly understood. In a grassland restoration experiment, we isolated the role of history for the relationships between plant biodiversity and multiple ecosystem functions by initiating assembly in three different years, while controlling for all other aspects of community assembly. We found that two aspects of assembly history—establishment year and succession—altered species and trait community trajectories, which in turn altered net primary productivity, decomposition rates, and floral resources. Moreover, history altered BEF relationships (which ranged from positive to negative), both within and across functions, by modifying the causal pathways linking species identity, traits, diversity, and ecosystem functions. Our results show that the interplay of deterministic succession and environmental stochasticity during establishment mediate historical contingencies that cause variation in biodiversity and ecosystem functions, even under otherwise identical assembly conditions. An explicit attention to history is needed to understand why biodiversity‐ecosystem function relationships vary in natural ecosystems: a critical question at the intersection of fundamental theory and applications to environmental change biology and ecosystem restoration.

     
    more » « less