skip to main content

Title: Crystal structure engineering in multimetallic high-index facet nanocatalysts

In the context of metal particle catalysts, composition, shape, exposed facets, crystal structure, and atom distribution dictate activity. While techniques have been developed to control each of these parameters, there is no general method that allows one to optimize all parameters in the context of polyelemental systems. Herein, by combining a solid-state, Bi-influenced, high-index facet shape regulation strategy with thermal annealing, we achieve control over crystal structure and atom distribution on the exposed high-index facets, resulting in an unprecedentedly diverse library of chemically disordered and ordered multimetallic (Pt, Co, Ni, Cu, Fe, and Mn) tetrahexahedral (THH) nanoparticles. Density functional theory calculations show that surface Bi modification stabilizes the {210} high-index facets of the nanoparticles, regardless of their internal atomic ordering. Moreover, we find that the ordering transition temperatures for the nanoparticles are dependent on their composition, and, in the case of Pt3Fe1THH nanoparticles, increasing Ni substitution leads to an order-to-disorder transition at 900 °C. Finally, we have discovered that ordered intermetallic THH Pt1Co1nanocatalysts exhibit a catalytic performance superior to disordered THH Pt1Co1nanoparticles and commercial Pt/C catalysts toward methanol electrooxidation, highlighting the importance of crystal structure and atom distribution control on high-index facets in nanoscale catalysts.

Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10252212
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
26
Page Range or eLocation-ID:
Article No. e2105722118
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Ordered intermetallic nanoparticles are promising electrocatalysts with enhanced activity and durability for the oxygen-reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). The ordered phase is generally identified based on the existence of superlattice ordering peaks in powder X-ray diffraction (PXRD). However, after employing a widely used postsynthesis annealing treatment, we have found that claims of “ordered” catalysts were possibly/likely mixed phases of ordered intermetallics and disordered solid solutions. Here, we employed in situ heating, synchrotron-based, X-ray diffraction to quantitatively investigate the impact of a variety of annealing conditions on the degree of ordering of large ensembles of Pt3Co nanoparticles. Monte Carlo simulations suggest that Pt3Co nanoparticles have a lower order–disorder phase transition (ODPT) temperature relative to the bulk counterpart. Furthermore, we employed microscopic-level in situ heating electron microscopy to directly visualize the morphological changes and the formation of both fully and partially ordered nanoparticles at the atomic scale. In general, a higher degree of ordering leads to more active and durable electrocatalysts. The annealed Pt3Co/C with an optimal degree of ordering exhibited significantly enhanced durability, relative to the disordered counterpart, in practical membrane electrode assembly (MEA) measurements. The results highlight the importance of understanding the annealing process to maximizemore »the degree of ordering in intermetallics to optimize electrocatalytic activity.

    « less
  2. Abstract

    Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0–7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0–3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.

  3. Octahedrally shaped Pt–Ni alloy nanoparticles on carbon supports have demonstrated unprecedented electrocatalytic activity for the oxygen reduction reaction (ORR), sparking interest as catalysts for low-temperature fuel cell cathodes. However, deterioration of the octahedral shape that gives the catalyst its superior activity currently prohibits the use of shaped catalysts in fuel cell devices, while the structural dynamics of the overall catalyst degradation are largely unknown. We investigate the time-resolved degradation pathways of such a Pt–Ni alloy catalyst supported on carbon during cycling and startup/shutdown conditions using an in situ STEM electrochemical liquid cell, which allows us to track changes happening over seconds. Thereby we can precisely correlate the applied electrochemical potential with the microstructural response of the catalyst. We observe changes of the nanocatalysts’ structure, monitor particle motion and coalescence at potentials that corrode carbon, and investigate the dissolution and redeposition processes of the nanocatalyst under working conditions. Carbon support motion, particle motion, and particle coalescence were observed as the main microstructural responses to potential cycling and holds in regimes where carbon corrosion happens. Catalyst motion happened more severely during high potential holds and sudden potential changes than during cyclic potential sweeps, despite carbon corrosion happening during both, as suggested bymore »ex situ DEMS results. During an extremely high potential excursion, the shaped nanoparticles became mobile on the carbon support and agglomerated facet-to-facet within 10 seconds. These experiments suggest that startup/shutdown potential treatments may cause catalyst coarsening on a much shorter time scale than full collapse of the carbon support. Additionally, the varying degrees of attachment of particles on the carbon support indicates that there is a distribution of interaction strengths, which in the future should be optimized for shaped particles. We further track the dissolution of Ni nanoparticles and determine the dissolution rate as a function of time for an individual nanoparticle – which occurs over the course of a few potential cycles for each particle. This study provides new visual understanding of the fundamental structural dynamics of nanocatalysts during fuel cell operation and highlights the need for better catalyst-support anchoring and morphology for allowing these highly active shaped catalysts to become useful in PEM fuel cell applications.« less
  4. Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds.more »Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors.« less
  5. Bi-atom catalysts (BACs) have attracted increasing attention in important electrocatalytic reactions such as the oxygen reduction reaction (ORR). Here, by means of density functional theory simulations coupled with machine-learning technology, we explored the structure–property correlation and catalytic activity origin of BACs, where metal dimers are coordinated by N-doped graphene (NC). We first sampled 26 homonuclear (M 2 /NC) BACs and constructed the activity volcano curve. Disappointingly, only one BAC, namely Co 2 /NC, exhibits promising ORR activity, leaving considerable room for enhancement in ORR performance. Then, we extended our study to 55 heteronuclear BACs (M 1 M 2 /NC) and found that 8 BACs possess competitive or superior ORR activity compared with the Pt(111) benchmark catalyst. Specifically, CoNi/NC shows the most optimal activity with a very high limiting potential of 0.88 V. The linear scaling relationships among the adsorption free energy of *OOH, *O and *OH species are significantly weakened on BACs as compared to a transition metal surface, indicating that it is difficult to precisely describe the catalytic activity with only one descriptor. Thus, we adopted machine-learning techniques to identify the activity origin for the ORR on BACs, which is mainly governed by simple geometric parameters. Our work notmore »only identifies promising BACs yet unexplored in the experiment, but also provides useful guidelines for the development of novel and highly efficient ORR catalysts.« less