skip to main content


Title: Phase-field modeling and n -point polytope characterization of nanostructured protuberances formed during vapor-deposition of phase-separating alloy films
Award ID(s):
1763128
NSF-PAR ID:
10252303
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
129
Issue:
24
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 245301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Seismograms are convolution results between seismic sources and the media that seismic waves propagate through, and, therefore, the primary observations for studying seismic source parameters and the Earth interior. The routine earthquake location and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals). As data increase, reliable automated seismic phase-picking methods are needed to analyze data and provide timely earthquake information. However, most traditional autopickers suffer from low signal-to-noise ratio and usually require additional efforts to tune hyperparameters for each case. In this study, we proposed a deep-learning approach that adapted soft attention gates (AGs) and recurrent-residual convolution units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mechanism was implemented to suppress responses from waveforms irrelevant to seismic phases, and the cooperating RRCUs further enhanced temporal connections of seismograms at multiple scales. We used numerous earthquake recordings in Taiwan with diverse focal mechanisms, wide depth, and magnitude distributions, to train and test our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P waves and 90.07% for S waves. The ARRU phase picker also shown a great generalization capability, when handling unseen data. When applied the model trained with Taiwan data to the southern California data, the ARRU phase picker shown no cognitive downgrade. Comparing with manual picks, the arrival times determined by the ARRU phase picker shown a higher consistency, which had been evaluated by a set of repeating earthquakes. The arrival picks with less human error could benefit studies, such as earthquake location and seismic tomography. 
    more » « less
  2. SUMMARY

    A robust, in situ estimate of shear-wave velocity VS and the small-strain damping ratio DS (or equivalently, the quality factor QS) is crucial for the design of buildings and geotechnical systems subjected to vibrations or earthquake ground shaking. A promising technique for simultaneously obtaining both VS and DS relies on the Multichannel Analysis of Surface Waves (MASW) method. MASW can be used to extract the Rayleigh wave phase velocity and phase attenuation data from active-source seismic traces recorded along linear arrays. Then, these data can be inverted to obtain VS and DS profiles. This paper introduces two novel methodologies for extracting the phase velocity and attenuation data. These new approaches are based on an extension of the beamforming technique which can be combined with a modal filter to isolate different Rayleigh propagation modes. Thus, the techniques return reliable phase velocity and attenuation estimates even in the presence of a multimode wavefield, which is typical of complex stratigraphic conditions. The reliability and effectiveness of the proposed approaches are assessed on a suite of synthetic wavefields and on experimental data collected at the Garner Valley Downhole Array and Mirandola sites. The results reveal that, under proper modelling of wavefield conditions, accurate estimates of Rayleigh wave phase velocity and attenuation can be extracted from active-source MASW wavefields over a broad frequency range. Eventually, the estimation of soil mechanical parameters also requires a robust inversion procedure to map the experimental Rayleigh wave parameters into soil models describing VS and DS with depth. The simultaneous inversion of phase velocity and attenuation data is discussed in detail in the companion paper.

     
    more » « less