- Award ID(s):
- 1945058
- NSF-PAR ID:
- 10252386
- Editor(s):
- Budak, Ceren; Cha, Meeyoung; Quercia, Daniele; Xie, Lexing
- Date Published:
- Journal Name:
- Proceedings of the International AAAI Conference on Weblogs and Social Media
- Volume:
- 15
- ISSN:
- 2334-0770
- Page Range / eLocation ID:
- 943--951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Social media provides a critical communication platform for political figures, but also makes them easy targets for harassment. In this paper, we characterize users who adversarially interact with political figures on Twitter using mixed-method techniques. The analysis is based on a dataset of 400 thousand users' 1.2 million replies to 756 candidates for the U.S. House of Representatives in the two months leading up to the 2018 midterm elections. We show that among moderately active users, adversarial activity is associated with decreased centrality in the social graph and increased attention to candidates from the opposing party. When compared to users who are similarly active, highly adversarial users tend to engage in fewer supportive interactions with their own party's candidates and express negativity in their user profiles. Our results can inform the design of platform moderation mechanisms to support political figures countering online harassment.more » « less
-
The purpose of the Twitter Disaster Behavior project is to identify patterns in online behavior during natural disasters by analyzing Twitter data. The main goal is to better understand the needs of a community during and after a disaster, to aid in recovery. The datasets analyzed were collections of tweets about Hurricane Maria, and recent earthquake events, in Puerto Rico. All tweets pertaining to Hurricane Maria are from the timeframe of September 15 through October 14, 2017. Similarly, tweets pertaining to the Puerto Rico earthquake from January 7 through February 6, 2020 were collected. These tweets were then analyzed for their content, number of retweets, and the geotag associated with the author of the tweet. We counted the occurrence of key words in topics relating to preparation, response, impact, and recovery. This data was then graphed using Python and Matplotlib. Additionally, using a Twitter crawler, we extracted a large dataset of tweets by users that used geotags. These geotags are used to examine location changes among the users before, during, and after each natural disaster. Finally, after performing these analyses, we developed easy to understand visuals and compiled these figures into a poster. Using these figures and graphs, we compared the two datasets in order to identify any significant differences in behavior and response. The main differences we noticed stemmed from two key reasons: hurricanes can be predicted whereas earthquakes cannot, and hurricanes are usually an isolated event whereas earthquakes are followed by aftershocks. Thus, the Hurricane Maria dataset experienced the highest amount of tweet activity at the beginning of the event and the Puerto Rico earthquake dataset experienced peaks in tweet activity throughout the entire period, usually corresponding to aftershock occurrences. We studied these differences, as well as other important trends we identified.more » « less
-
BACKGROUND Effective communication is crucial during health crises, and social media has become a prominent platform for public health experts to inform and to engage with the public. At the same time, social media also platforms pseudo-experts who may promote contrarian views. Despite the significance of social media, key elements of communication such as the use of moral or emotional language and messaging strategy, particularly during the COVID-19 pandemic, has not been explored.
OBJECTIVE This study aims to analyze how notable public health experts (PHEs) and pseudo-experts communicated with the public during the COVID-19 pandemic. Our focus is the emotional and moral language they used in their messages across a range of pandemic issues. We also study their engagement with political elites and how the public engaged with PHEs to better understand the impact of these health experts on the public discourse.
METHODS We gathered a dataset of original tweets from 489 PHEs and 356 pseudo- experts on Twitter (now X) from January 2020 to January 2021, as well as replies to the original tweets from the PHEs. We identified the key issues that PHEs and pseudo- experts prioritized. We also determined the emotional and moral language in both the original tweets and the replies. This approach enabled us to characterize key priorities for PHEs and pseudo-experts, as well as differences in messaging strategy between these two groups. We also evaluated the influence of PHE language and strategy on the public response.
RESULTS Our analyses revealed that PHEs focus on masking, healthcare, education, and vaccines, whereas pseudo-experts discuss therapeutics and lockdowns more frequently. PHEs typically used positive emotional language across all issues, expressing optimism and joy. Pseudo-experts often utilized negative emotions of pessimism and disgust, while limiting positive emotional language to origins and therapeutics. Along the dimensions of moral language, PHEs and pseudo-experts differ on care versus harm, and authority versus subversion, across different issues. Negative emotional and moral language tends to boost engagement in COVID-19 discussions, across all issues. However, the use of positive language by PHEs increases the use of positive language in the public responses. PHEs act as liberal partisans: they express more positive affect in their posts directed at liberals and more negative affect directed at conservative elites. In contrast, pseudo-experts act as conservative partisans. These results provide nuanced insights into the elements that have polarized the COVID-19 discourse.
CONCLUSIONS Understanding the nature of the public response to PHE’s messages on social media is essential for refining communication strategies during health crises. Our findings emphasize the need for experts to consider the strategic use of moral and emotional language in their messages to reduce polarization and enhance public trust.
-
Abstract How do social networks influence the decision to migrate? Prior work suggests two distinct mechanisms that have historically been difficult to differentiate: as a conduit of information, and as a source of social and economic support. We disentangle these mechanisms using a massive “digital trace” dataset that allows us to observe the migration decisions made by millions of individuals over several years, as well as the complete social network of each person in the months before and after migration. These data allow us to establish a new set of stylized facts about the relationship between social networks and migration. Our main analysis indicates that the average migrant derives more social capital from “interconnected” networks that provide social support than from “extensive” networks that efficiently transmit information.
-
null (Ed.)Content moderation is a critical service performed by a variety of people on social media, protecting users from offensive or harmful content by reviewing and removing either the content or the perpetrator. These moderators fall into one of two categories: employees or volunteers. Prior research has suggested that there are differences in the effectiveness of these two types of moderators, with the more transparent user-based moderation being useful for educating users. However, direct comparisons between commercially-moderated and user-moderated platforms are rare, and apart from the difference in transparency, we still know little about what other disparities in user experience these two moderator types may create. To explore this, we conducted cross-platform surveys of over 900 users of commercially-moderated (Facebook, Instagram, Twitter, and YouTube) and user-moderated (Reddit and Twitch) social media platforms. Our results indicated that although user-moderated platforms did seem to be more transparent than commercially-moderated ones, this did not lead to user-moderated platforms being perceived as less toxic. In addition, commercially-moderated platform users want companies to take more responsibility for content moderation than they currently do, while user-moderated platform users want designated moderators and those who post on the site to take more responsibility. Across platforms, users seem to feel powerless and want to be taken care of when it comes to content moderation as opposed to engaging themselves.more » « less