skip to main content


Title: HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Abstract. Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics.  more » « less
Award ID(s):
1831623
NSF-PAR ID:
10252485
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
13
Issue:
9
ISSN:
1991-9603
Page Range / eLocation ID:
3863 to 3886
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bedrock rivers are the pacesetters of landscape evolution in uplifting fluvial landscapes. Water discharge variability and sediment transport are important factors influencing bedrock river processes. However, little work has focused on the sensitivity of hillslope sediment supply to precipitation events and its implications on river evolution in tectonically active landscapes. We model the temporal variability of water discharge and the sensitivity of sediment supply to precipitation events as rivers evolve to equilibrium over 106model years. We explore how coupling sediment supply sensitivity with discharge variability influences rates and timing of river incision across climate regimes. We find that sediment supply sensitivity strongly impacts which water discharge events are the most important in driving river incision and modulates channel morphology. High sediment supply sensitivity focuses sediment delivery into the largest river discharge events, decreasing rates of bedrock incision during floods by orders of magnitude as rivers are inundated with new sediment that buries bedrock. The results show that the use of river incision models in which incision rates increase monotonically with increasing river discharge may not accurately capture bedrock river dynamics in all landscapes, particularly in steep landslide prone landscapes. From our modeling results, we hypothesize the presence of an upper discharge threshold for river incision at which storms transition from being incisional to depositional. Our work illustrates that sediment supply sensitivity must be accounted for to predict river evolution in dynamic landscapes. Our results have important implications for interpreting and predicting climatic and tectonic controls on landscape morphology and evolution.

     
    more » « less
  2. Abstract

    Bedrock landslides shape topography and mobilize large volumes of sediment. Yet, interactions between landslide‐produced sediment and fluvial systems that together govern large‐scale landscape evolution are not well understood. To explain morphological patterns observed in steep, landslide‐prone terrain, we explicitly model stochastic landsliding and associated sediment dynamics. The model accounts for several common landscape features such as slope frequency distributions, which include values in excess of regional stability limits, quasi‐planar hillslopes decorated with straight, closely spaced channel‐like features, and accumulation of sediment in valley networks rather than on hillslopes. Stochastic landsliding strongly affects the magnitude and timing of sediment supply to the fluvial system. We show that intermittent sediment supply is ultimately reflected in topography. At dynamic equilibrium, landslide‐derived sediment pulses generate persistent landscape dynamism through the formation and breaching of landslide dams and epigenetic gorges as landslides force shifts in channel positions. Our work highlights the importance of interactions between landslides and sediment dynamics that ultimately control landscape‐scale response to environmental change.

     
    more » « less
  3. Abstract

    Sediment grain size links sediment production, weathering, and fining from fractured bedrock on hillslopes to river incision and landscape relief. Yet models of sediment grain size delivery to rivers remain unconstrained due to a scarcity of field data. We analyzed how bedrock fracture spacing and hillslope weathering influence landscape‐scale patterns in surface sediment grain size across gradients of erosion rate and hillslope bedrock exposure in the San Gabriel Mountains (SGM) and northern San Jacinto Mountains (NSJM) of California, USA. Using ground‐based structure‐from‐motion photogrammetry models of 50 bedrock cliffs, we showed that fracture density is ~5 times higher in the SGM than the NSJM. 274 point‐count‐surveys of surface sediment grain size measured in the field and from imagery show a drainage area control on sediment grain size, with systematic downslope coarsening on hillslopes and in headwater‐colluvial channels transitioning to downstream fining in fluvial channels. In contrast to prior work and predictions from a hillslope weathering model, grain size does not increase smoothly with increasing erosion rate. For soil‐mantled landscapes, sediment grain size increases with increasing erosion rates; however, once bare bedrock emerges on hillslopes, sediment grain size in both the NSJM and SGM becomes insensitive to further increases in erosion rate and hillslope bedrock exposure, and instead reflects fracture spacing contrasts between the NSJM and SGM. We interpret this threshold behavior to emerge in steep landscapes due to efficient delivery of coarse sediment from bedrock hillslopes to channels and the relative immobility of coarse sediment in fluvial channels.

     
    more » « less
  4. Abstract

    In this study, we present direct field measurements of modern lateral and vertical bedrock erosion during a 2‐year study period, and optically stimulated luminescence (OSL) ages of fluvial material capping a flat bedrock surface at Kings Creek located in northeast Kansas, USA. These data provide insight into rates and mechanisms of bedrock erosion and valley‐widening in a heterogeneously layered limestone‐shale landscape. Lateral bedrock erosion outpaced vertical incision during our 2‐year study period. Modern erosion rates, measured at erosion pins in limestone and shale bedrock reveal that shale erosion rate is a function of wetting and drying cycles, while limestone erosion rate is controlled by discharge and fracture spacing. Variability in fracture spacing amongst field sites controls the size of limestone block collapse into the stream, which either allowed continued lateral erosion following rapid detachment and transport of limestone blocks, or inhibited lateral erosion due to limestone blocks that protected the valley wall from further erosion. The OSL ages of fluvial material sourced from the strath terrace were older than any material previously dated at our study site and indicate that Kings Creek was actively aggrading and incising throughout the late Pleistocene. Coupling field measurements and observations with ages of fluvial terraces can be useful to investigate the timing and processes linked to how bedrock rivers erode laterally over time to form wide bedrock valleys.

     
    more » « less
  5. We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.

     
    more » « less