skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interaction diversity explains the maintenance of phytochemical diversity
Award ID(s):
1856776
PAR ID:
10252639
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Bardgett, Richard
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
6
ISSN:
1461-023X
Page Range / eLocation ID:
1205 to 1214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity. 
    more » « less
  2. {"Abstract":["Original data and R code to accompany the manuscript: "Interaction diversity explains the maintenance of phytochemical diversity" by Susan R. Whitehead, Ethan Bass, Alexsandra Corrigan, André Kessler, and Katja Poveda Accepted for publication in Ecology Letters<\/p>\n\nAbstract: The production of complex mixtures of secondary metabolites is a ubiquitous feature of plants. Several evolutionary hypotheses seek to explain how phytochemical diversity is maintained, including the synergy hypothesis, the interaction diversity hypothesis, and the screening hypothesis. We experimentally tested predictions derived from these hypotheses by manipulating the richness and structural diversity of phenolic metabolites in the diets of eight plant consumers. Across 3940 total bioassays, there was clear support for the interaction diversity hypothesis over the synergy or screening hypotheses. The number of consumers affected by a particular phenolic composition increased with increasing richness and structural diversity of compounds. Furthermore, the bioactivity of phenolics was consumer-specific. All compounds tested reduced the performance of at least one consumer, but no compounds affected all consumers. These results show how phytochemical diversity may be maintained in nature by a complex selective landscape exerted by diverse communities of plant consumers.<\/p>\n\nhttps://github.com/WhiteheadLabVT/Phytochemical-Diversity-Experiment/releases/tag/v1.0.0<\/p>"]} 
    more » « less
  3. null (Ed.)
  4. https://peer.asee.org/29062 This theory paper explores how diversity apart from social identities like race and gender is framed in the engineering education literature and how these concepts promote a different but compatible approach to understanding diversity—latent diversity. Latent diversity is a new approach to diversity work that captures underlying affective and cognitive differences that provide potential sources for innovation but are not visible. This approach does not examine other non-visible social identities like sexual orientation, first-generation status, socioeconomic status, etc. Prior literature suggests that diversity in approaches, problem solving, and ways of thinking improve innovation in engineering design more reliably than does diversity along the lines of age, race, gender, etc. However, the process of enculturating students into engineering through engineering curriculum often creates homogeneity in students’ approaches to problems, ways of thinking, and attitudes. In this paper, I explore a limited set of existing research on diversity from these underlying perspectives including identities, alternative ways of thinking and being, motivation, cognitive diversity, and innovation and creativity. This work synthesizes the findings of these studies to paint a rich picture of how students develop different attitudes and skills to navigate their paths within engineering. Additionally, this work provides an evidence-based argument for the importance of recognizing and understanding latent diversity to promote a more inclusive environment in engineering and recruit, educate, retain, and graduate more innovative and diverse engineers. This paper opens the conversation about a new, but complementary, focus for developing a STEM workforce rich in talent and capable of adapting to the changing STEM landscape. 
    more » « less