skip to main content


Title: Evaluating the relationship between the area and latitude of large igneous provinces and Earth’s long-term climate state. In Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes
One of the hypothesized effects of large igneous provinces (LIPs) is planetary cooling on million-year timescales associated with enhanced silicate weathering of freshly emplaced basalt. This study combines reconstructions of the original surface extent and emplacement ages of LIPs, a paleogeographic model, and a parameterization of LIP erosion to estimate LIP area in all latitudinal bands through the Phanerozoic. This analysis reveals no significant correlation between total LIP area, nor LIP area in the tropics, and the extent of continental ice sheets. The largest peaks in tropical LIP area are at times of non-glacial climate. These results suggest that changes in planetary weatherability associated with LIPs are not the fundamental control on whether Earth is in a glacial or non-glacial climate, although they could provide a secondary modulating effect in conjunction with other processes.  more » « less
Award ID(s):
1926001
NSF-PAR ID:
10252793
Author(s) / Creator(s):
Editor(s):
Ernst, R.E.
Date Published:
Journal Name:
Geophysical monograph
Volume:
255
ISSN:
0065-8448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the hypothesized effects of large igneous provinces (LIPs) is planetary cooling on million-year timescales associated with enhanced silicate weathering of freshly emplaced basalt. This study combines reconstructions of the original surface extent and emplacement ages of LIPs, a paleogeographic model, and a parameterization of LIP erosion to estimate LIP area in all latitudinal bands through the Phanerozoic. This analysis reveals no significant correlation between total LIP area, nor LIP area in the tropics, and the extent of continental ice sheets. The largest peaks in tropical LIP area are at times of non-glacial climate. These results suggest that changes in planetary weatherability associated with LIPs are not the fundamental control on whether Earth is in a glacial or non-glacial climate, although they could provide a secondary modulating effect in conjunction with other processes. 
    more » « less
  2. Abstract Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure, and breakup of the supercontinent Pangea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return-flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e., continental LIPs). However, a number of LIPs formed exterior to Pangea (e.g., Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection, and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep-mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP, and potentially the Shatsky Rise, by linking the origin of these LIPs to the return-flow that generated deep mantle exterior plumes. 
    more » « less
  3. Abstract Recent U-Pb high-precision geochronological studies have shown rapid emplacement of the intrusive doleritic component of the Karoo Large Igneous Province (KLIP) in Southern Africa. However, these studies focused on a relatively small geographic and altitudinal region of the KLIP. Additionally, the timing of initiation of extrusive volcanism, preserved in the Drakensberg-Lesotho highlands and its relationship to the intrusive suite, has only been imprecisely constrained by Ar-Ar dates. Here, we present new high-resolution U-Pb zircon ages on dolerite sills and dykes from across the central eastern Karoo Basin (South Africa) at elevations between mean sea level and 1 560 m, as well as U-Pb detrital zircon data that can be used to estimate the maximum age of volcaniclastic deposition near the base of the extrusive component of the KLIP. Dolerite samples were taken across two areas: (1) thick dykes exposed along the coast of the Indian Ocean to ~1 600 m flanking the Drakensberg Escarpment in the Eastern Cape; and (2) sills between 20 and 220 m below surface, in a borehole core within the interior of the Karoo Basin, 400 km hinterland from the coastline. Our estimated dolerite emplacement ages span a range of ca. 80 thousand years (Kyr), between 183.122 ± 0.029/-0.061 and 183.042 ± 0.042/-0.072 million years ago (Ma), and fall within the 331 +60/-54 Kyr age range previously established for magmatism related to the KLIP, despite the marked increase in sampling coverage in terms of area and altitude in this study. Therefore, KLIP geochronology is consistent with other LIPS such as the Siberian and Deccan Traps that supports the hypothesis of rapid emplacement timescales (<1 Myr). Additionally, these data are consistent with, but better delineate that the KLIP in southern Africa appears to be ca. 500 Kyr older than the main phase of magmatism in the Ferrar LIP of Antarctica. Detrital zircons from the basal volcanic sequence of the Drakensberg Group exhibit age peaks at ca. 1 and 0.5 Ga, typical of the surrounding Namaqua-Natal and Pan-African basement rocks, as well as younger peaks at ca. 260 and 200 Ma that likely relate to source provenances from south-western Gondwana and reworking of the Karoo Supergroup sedimentary rocks. High-precision U-Pb dates of the youngest zircon grains result in a maximum depositional age for the basal pyroclastics of 185.25 ± 0.25 Ma, allowing for a ca. 2 Myr offset with the intrusive Karoo dolerite suite. 
    more » « less
  4. null (Ed.)
    Abstract Large igneous provinces (LIPs) typically form in one short pulse of ∼1–5 Ma or several punctuated ∼1–5 Ma pulses. Here, our 25 new 40Ar/39Ar plateau ages for the main construct of the Kerguelen LIP—the Cretaceous Southern and Central Kerguelen Plateau, Elan Bank, and Broken Ridge—show continuous volcanic activity from ca. 122 to 90 Ma, a long lifespan of >32 Ma. This suggests that the Kerguelen LIP records the longest, continuous high-magma-flux emplacement interval of any LIP. Distinct from both short-lived and multiple-pulsed LIPs, we propose that Kerguelen is a different type of LIP that formed through long-term interactions between a mantle plume and mid-ocean ridge, which is enabled by multiple ridge jumps, slow spreading, and migration of the ridge. Such processes allow the transport of magma products away from the eruption center and result in long-lived, continuous magmatic activity. 
    more » « less
  5. Although many sources of atmospheric CO2 have been identified, the major sinks are best understood in a deep-time context. Here, we focus on two Large Igneous Provinces (LIPs), the Central Atlantic Magmatic Province (CAMP) situated in the low latitude humid zone ~201.6 Ma and the Karoo-Ferrar located at high southern latitudes ~183 Ma. We use soil carbonate, lithologic, δD of n-alkanes, Sr data, and modeling to examine how these eruptions, hydrological cycling, and weathering impacted global atmospheric CO2, carbon cycling, and biotic extinction at the ETE and T-OAE hyperthermals. CAMP largely erupted in the tropics, doubled atmospheric CO2 from ~2,500 – 5,000 ppm at the ETE (observed in soil carbonates with an onset <1000 and a duration of <~20 ky) and rapidly sequestered CO2 (< 2,500 ppm) as recorded in Newark Supergroup basins (eastern US). These same strata preserve variations in the lake level expression of the climatic precession cycle based on lithology and δD. High cyclicity variance tracked high pCO2 (>~4000 ppm) and drove insolation-paced increases in precipitation. Leaf wax δD shows significant variability, reflecting an enhanced hydrological cycle at the ETE with repeated sudden shifts in relative evaporation for ~1 Myr. In marine strata, 87Sr/86Sr and 187Os/188Os values track changes in pCO2, suggesting a terrestrial/marine linkage through continental weathering, CO2, and runoff. Despite the northward movement of these basins into the arid belt, our data suggest lower evaporation relative to precipitation driven by lower temperatures, consistent with lower pCO2 due to CAMP weathering, which modeling estimates to have increased 6 to 10-fold for >1.6 Myr after the eruptive phase. Release of CO2 from the Karoo-Ferrar LIP similarly enhanced the hydrological cycle as evidenced from sedimentary observations (e.g., fine-scale turbidites and debris flow deposits) in Yorkshire (UK). The onset of the carbon isotope excursion at the T-OAE lasts 0.5 Myr with a 1.5 Myr duration modulated by astronomical pacing. Our leaf wax δD from the same strata show a transient enhancement in the hydrological cycle. Although the Karoo-Ferrar has a limited drawdown potential when compared with CAMP‐type basalts because of its higher latitude location, Toarcian weathering rates may have increased 2 to 5-fold, acting as a net sink 1–2 Myr after eruptions ceased. 
    more » « less