skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of nocturnal wake and sleep stages defines central nervous system disorders of hypersomnolence
Abstract Study Objectives We determine if young people with narcolepsy type 1 (NT1), narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH) have distinct nocturnal sleep stability phenotypes compared to subjectively sleepy controls. Methods Participants were 5- to 21-year old and drug-naïve or drug free: NT1 (n = 46), NT2 (n = 12), IH (n = 18), and subjectively sleepy controls (n = 48). We compared the following sleep stability measures from polysomnogram recording between each hypersomnolence disorder to subjectively sleepy controls: number of wake and sleep stage bouts, Kaplan–Meier survival curves for wake and sleep stages, and median bout durations. Results Compared to the subjectively sleepy control group, NT1 participants had more bouts of wake and all sleep stages (p ≤ .005) except stage N3. NT1 participants had worse survival of nocturnal wake, stage N2, and rapid eye movement (REM) bouts (p < .005). In the first 8 hours of sleep, NT1 participants had longer stage N1 bouts but shorter REM (all ps < .004). IH participants had a similar number of bouts but better survival of stage N2 bouts (p = .001), and shorter stage N3 bouts in the first 8 hours of sleep (p = .003). In contrast, NT2 participants showed better stage N1 bout survival (p = .006) and longer stage N1 bouts (p = .02). Conclusions NT1, NT2, and IH have unique sleep physiology compared to subjectively sleepy controls, with only NT1 demonstrating clear nocturnal wake and sleep instability. Overall, sleep stability measures may aid in diagnoses and management of these central nervous system disorders of hypersomnolence.  more » « less
Award ID(s):
1853511
PAR ID:
10252817
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Sleep
ISSN:
0161-8105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Memories of waking-life events are incorporated into dreams, but their incorporation is not uniform across a night of sleep. This study aimed to elucidate ways in which such memory sources vary by sleep stage and time of night. Twenty healthy participants (11 F; 24.1 ± 5.7 years) spent a night in the laboratory and were awakened for dream collection approximately 12 times spread across early, middle, and late periods of sleep, while covering all stages of sleep (N1, N2, N3, REM). In the morning, participants identified and dated associated memories of waking-life events for each dream report, when possible. The incorporation of recent memory sources in dreams was more frequent in N1 and REM than in other sleep stages. The incorporation of distant memories from over a week ago, semantic memories not traceable to a single event, and anticipated future events remained stable throughout sleep. In contrast, the relative proportions of recent versus distant memory sources changed across the night, independently of sleep stage, with late-night dreams in all stages having relatively less recent and more remote memory sources than dreams earlier in the night. Qualitatively, dreams tended to repeat similar themes across the night and in different sleep stages. The present findings clarify the temporal course of memory incorporations in dreams, highlighting a specific connection between time of night and the temporal remoteness of memories. We discuss how dream content may, at least in part, reflect the mechanisms of sleep-dependent memory consolidation. 
    more » « less
  2. Abstract Study ObjectivesEvaluate wrist-placed accelerometry predicted heartrate compared to electrocardiogram (ECG) heartrate in children during sleep. MethodsChildren (n = 82, 61% male, 43.9% black) wore a wrist-placed Apple Watch Series 7 (AWS7) and ActiGraph GT9X during a polysomnogram. Three-Axis accelerometry data was extracted from AWS7 and the GT9X. Accelerometry heartrate estimates were derived from jerk (the rate of acceleration change), computed using the peak magnitude frequency in short time Fourier Transforms of Hilbert transformed jerk computed from acceleration magnitude. Heartrates from ECG traces were estimated from R-R intervals using R-pulse detection. Lin’s concordance correlation coefficient (CCC), mean absolute error (MAE), and mean absolute percent error (MAPE) assessed agreement with ECG estimated heart rate. Secondary analyses explored agreement by polysomnography sleep stage and a signal quality metric. ResultsThe developed scripts are available on Github. For the GT9X, CCC was poor at −0.11 and MAE and MAPE were high at 16.8 (SD = 14.2) beats/minute and 20.4% (SD = 18.5%). For AWS7, CCC was moderate at 0.61 while MAE and MAPE were lower at 6.4 (SD = 9.9) beats/minute and 7.3% (SD = 10.3%). Accelerometry estimated heartrate for AWS7 was more closely related to ECG heartrate during N2, N3 and REM sleep than lights on, wake, and N1 and when signal quality was high. These patterns were not evident for the GT9X. ConclusionsRaw accelerometry data extracted from AWS7, but not the GT9X, can be used to estimate heartrate in children while they sleep. Future work is needed to explore the sources (i.e. hardware, software, etc.) of the GT9X’s poor performance. 
    more » « less
  3. A large number of human intracranial EEG (iEEG) recordings have been collected for clinical purposes, in institutions all over the world, but the vast majority of these are unaccompanied by EOG and EMG recordings which are required to separate Wake episodes from REM sleep using accepted methods. In order to make full use of this extremely valuable data, an accurate method of classifying sleep from iEEG recordings alone is required. Existing methods of sleep scoring using only iEEG recordings accurately classify all stages of sleep, with the exception that wake (W) and rapid-eye movement (REM) sleep are not well distinguished. A novel multitaper (Wake vs. REM) alpha-rhythm classifier is developed by generalizing K-means clustering for use with multitaper spectral eigencoefficients. The performance of this unsupervised method is assessed on eight subjects exhibiting normal sleep architecture in a hold-out analysis and is compared against a classical power detector. The proposed multitaper classifier correctly identifies 36±6 min of REM in one night of recorded sleep, while incorrectly labeling less than 10% of all labeled 30 s epochs for all but one subject (human rater reliability is estimated to be near 80%), and outperforms the equivalent statistical-power classical test. Hold-out analysis indicates that when using one night’s worth of data, an accurate generalization of the method on new data is likely. For the purpose of studying sleep, the introduced multitaper alpha-rhythm classifier further paves the way to making available a large quantity of otherwise unusable IEEG data. 
    more » « less
  4. The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep. Validation results in comparison with the gold standard (i.e., polysomnography) (n=849) demonstrate that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM), detects sleep apnea (AUROC = 0.88), and measures the patient's Apnea-Hypopnea Index (ICC=0.95; 95% CI = [0.93, 0.97]). Notably, the model exhibits equitable performance across race, sex, and age. Moreover, the model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders. These findings not only hold promise for clinical practice and interventional trials but also underscore the significance of sleep as a fundamental component in understanding and managing various diseases. 
    more » « less
  5. Wearable devices have become commonplace tools for tracking behavioral and physiological parameters in real-world settings. Nonetheless, the practical utility of these data for clinical and research applications, such as sleep analysis, is hindered by their noisy, large-scale, and multidimensional characteristics. Here, we develop a neural network algorithm that predicts sleep stages by tracking topological features (TFs) of wearable data and model-driven clock proxies (CPs) reflecting the circadian propensity for sleep. To evaluate its accuracy, we apply it to motion and heart rate data from the Apple Watch worn by young subjects undergoing polysomnography (PSG) and compare the predicted sleep stages with the corresponding ground truth PSG records. The neural network that includes TFs and CPs along with raw wearable data as inputs shows improved performance in classifying Wake/REM/NREM sleep. For example, it shows significant improvements in identifying REM and NREM sleep (AUROC/AUPRC improvements >13% and REM/NREM accuracy improvement of 12%) compared with the neural network using only raw data inputs. We find that this improvement is mainly attributed to the heart rate TFs. To further validate our algorithm on a different population, we test it on elderly subjects from the Multi-ethnic Study of Atherosclerosis cohort. This confirms that TFs and CPs contribute to the improvements in Wake/REM/NREM classification. We next compare the performance of our algorithm with previous state-of-the-art wearable-based sleep scoring algorithms and find that our algorithm outperforms them within and across different populations. This study demonstrates the benefits of combining topological data analysis and mathematical modeling to extract hidden inputs of neural networks from puzzling wearable data. 
    more » « less