Full waveform inversion (FWI) and least-squares reverse time migration (LSRTM) are popular imaging techniques that can be solved as PDE-constrained optimization problems. Due to the large-scale nature, gradient- and Hessian-based optimization algorithms are preferred in practice to find the optimizer iteratively. However, a balance between the evaluation cost and the rate of convergence needs to be considered. We propose the use of Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate a gradient descent method. We show that AA can achieve fast convergence that provides competitive results with some quasi-Newton methods. Independent ofmore »
Anderson acceleration for seismic inversion
State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results more »
- Award ID(s):
- 1913129
- Publication Date:
- NSF-PAR ID:
- 10252867
- Journal Name:
- GEOPHYSICS
- Volume:
- 86
- Issue:
- 1
- Page Range or eLocation-ID:
- R99 to R108
- ISSN:
- 0016-8033
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A computationally efficient one-shot approach with a low memory footprint is presented for unsteady optimization. The proposed technique is based on a novel and unique approach that combines local-in-time and fixed-point iteration methods to advance the unconverged primal and adjoint solutions forward and backward in time to evaluate the sensitivity of the globally time-integrated objective function. This is in some ways similar to the piggyback iterations in which primal and adjoint solutions are evaluated at a frozen design. During each cycle, the primal, adjoint, and design update problems are solved to advance the optimization problem. This new coupled approach ismore »
-
A computationally efficient "one-shot" approach with a low memory footprint is presented for unsteady design optimization. The proposed technique is based on a novel and unique approach that combines "local-in-time" and fixed-point iteration methods to advance the unconverged primal and adjoint solutions forward and backward in time to evaluate the sensitivity of the globally time-integrated objective function. This is in some ways similar to the "piggyback" iterations where primal and adjoint solutions are evaluated at a frozen design. During each cycle, the primal, adjoint, and design update problems are solved to advance the optimization problem. This new coupled approach ismore »
-
First-arrival traveltime tomography is an essential method for obtaining near-surface velocity models. The adjoint-state first-arrival traveltime tomography is appealing due to its straightforward implementation, low computational cost, and low memory consumption. Because solving the point-source isotropic eikonal equation by either ray tracers or eikonal solvers intrinsically corresponds to emanating discrete rays from the source point, the resulting traveltime gradient is singular at the source point, and we denote such a singular pattern the imprint of ray-illumination. Because the adjoint-state equation propagates traveltime residuals back to the source point according to the negative traveltime gradient, the resulting adjoint state will inheritmore »
-
Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditionsmore »