skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Performance Evaluation of TCP BBRv2 Alpha
The alpha version of Bottleneck Bandwidth and Round-trip Time version 2 (BBRv2) has been recently presented, which aims to mitigate the shortcomings of its predecessor, BBR version 1 (BBRv1). Previous studies show that BBRv1 provides a high link utilization and low queuing delay by estimating the available bottleneck bandwidth. However, its aggressiveness induces unfairness when flows i) use different congestion control algorithms, such as CUBIC, and ii) have distinct round-trip times (RTTs). This paper presents an experimental evaluation of BBRv2, using Mininet. Results show that the coexistence between BBRv2-CUBIC is enhanced with respect to that of BBRv1-CUBIC, as measured by the fairness index. They also show that BBRv2 mitigates the RTT unfairness problem observed in BBRv1. Additionally, BBRv2 achieves a better fair share of the bandwidth than its predecessor when network conditions such as bandwidth and latency dynamically change. Results also indicate that the average flow completion time of concurrent flows is reduced when BBRv2 is used.  more » « less
Award ID(s):
1925484
PAR ID:
10252944
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 43rd International Conference on Telecommunications and Signal Processing (TSP)
Page Range / eLocation ID:
309 to 312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud services are deployed in datacenters connected though high-bandwidth Wide Area Networks (WANs). We find that WAN traffic negatively impacts the performance of datacenter traffic, increasing tail latency by 2.5x, despite its small bandwidth demand. This behavior is caused by the long round-trip time (RTT) for WAN traffic, combined with limited buffering in datacenter switches. The long WAN RTT forces datacenter traffic to take the full burden of reacting to congestion. Furthermore, datacenter traffic changes on a faster time-scale than the WAN RTT, making it difficult for WAN congestion control to estimate available bandwidth accurately. We present Annulus, a congestion control scheme that relies on two control loops to address these challenges. One control loop leverages existing congestion control algorithms for bottlenecks where there is only one type of traffic (i.e., WAN or datacenter). The other loop handles bottlenecks shared between WAN and datacenter traffic near the traffic source, using direct feedback from the bottleneck. We implement Annulus on a testbed and in simulation. Compared to baselines using BBR for WAN congestion control and DCTCP or DCQCN for datacenter congestion control, Annulus increases bottleneck utilization by 10% and lowers datacenter flow completion time by 1.3-3.5x. 
    more » « less
  2. Mobility, power, and price points often dictate that robots do not have sufficient computing power on board to run contemporary robot algorithms at desired rates. Cloud computing providers such as AWS, GCP, and Azure offer immense computing power on demand, but tapping into that power from a robot is non-trivial. We present FogROS2, an open-source platform to facilitate cloud and fog robotics that is compatible with the emerging Robot Operating System 2 (ROS 2) standard. FogROS2 is completely redesigned and distinct from its predecessor FogROS1 in 9 ways, and has lower latency, overhead, and startup times; improved usability, and additional automa-tion, such as region and computer type selection. Additionally, FogROS2 was added to the official distribution of ROS 2, gaining performance, timing, and additional improvements associated with ROS 2. In examples, FogROS2 reduces SLAM latency by 50 %, reduces grasp planning time from 14 s to 1.2 s, and speeds up motion planning 28x. When compared to FogROS1, FogROS2 reduces network utilization by up to 3.8x, improves startup time by 63 %, and network round-trip latency by 97 %for images using video compression. The source code, examples, and documentation for FogROS2 are available at https://github.com/BerkeleyAutomation/FogROS2, and is available through the official ROS 2 repository at https://index.ros.org/p/fogros2/ 
    more » « less
  3. Previous studies have observed that TCP pacing evenly spacing out packets-minimizes traffic burstiness, reduces packet losses, and increases throughput. However, the main drawback of pacing is that the number of flows and the bottleneck link capacity must be known in advance. With this information, pacing is achieved by manually tuning sender nodes to send at rates that aggregate to the bottleneck capacity. This paper proposes a scheme based on programmable switches by which rates are dynamically adjusted. These switches store the network's state in the data plane and notify sender nodes to update their pacing rates when the network's state changes, e.g., a new flow joins or leaves the network. The scheme uses a custom protocol that is encapsulated inside the IP Options header field and thus is compatible with legacy switches (i.e., the scheme does not require all switches to be programmable). Furthermore, the processing overhead at programmable switches is minimal, as custom packets are only generated when a flow joins or leaves the network. Simulation results conducted in Mininet demonstrate that the proposed scheme is capable of dynamically notifying hosts to adapt the pacing rate with a minimum delay, increasing throughput, mitigating the TCP sawtooth behavior, and achieving better fairness among concurrent flows. The proposed scheme and preliminary results are particularly attractive to applications such as Science DMZ, where typically a small number of large flows must share the bandwidth capacity. 
    more » « less
  4. BBR is a new congestion control algorithm (CCA) deployed for Chromium QUIC and the Linux kernel. As the default CCA for YouTube (which commands 11+% of Internet traffic), BBR has rapidly become a major player in Internet congestion control. BBR’s fairness or friendliness to other connections has recently come under scrutiny as measurements from multiple research groups have shown undesirable outcomes when BBR competes with traditional CCAs. One such outcome is a fixed, 40% proportion of link capacity consumed by a single BBR flow when competing with as many as 16 loss-based algorithms like Cubic or Reno. In this short paper, we provide the first model capturing BBR’s behavior in competition with loss-based CCAs. Our model is coupled with practical experiments to validate its implications. The key lesson is this: under competition, BBR becomes window-limited by its ‘in-flight cap’ which then determines BBR’s bandwidth consumption. By modeling the value of BBR’s in-flight cap under varying network conditions, we can predict BBR’s throughput when competing against Cubic flows with a median error of 5%, and against Reno with a median of 8%. 
    more » « less
  5. xisting network switches implement scheduling disciplines such as FIFO or deficit round robin that provide good utilization or fairness across flows, but do so at the expense of leaking a variety of information via timing side channels. To address this privacy breach, we propose a new scheduling mechanism for switches called indifferent-first scheduling (IFS). A salient aspect of IFS is that it provides privacy (a notion of strong isolation) to clients that opt-in, while preserving the (good) performance and utilization of FIFO or round robin for clients that are satisfied with the status quo. Such a hybrid scheduling mechanism addresses the main drawback of prior proposals such as time-division multiple access (TDMA) that provide strong isolation at the cost of low utilization and increased packet latency for all clients. We identify limitations of modern programmable switches which inhibit an implementation of IFS without compromising its privacy guarantees, and show that a version of IFS with full security can be implemented at line rate in the recently proposed push-in-first-out (PIFO) queuing architecture. 
    more » « less