We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H
We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble
- Publication Date:
- NSF-PAR ID:
- 10252958
- Journal Name:
- Probability Theory and Related Fields
- Volume:
- 181
- Issue:
- 1-3
- Page Range or eLocation-ID:
- p. 669-710
- ISSN:
- 0178-8051
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ , isothermal compressibility$$\rho (T)$$ , and self-diffusion coefficients$$\kappa _T(T)$$ D (T ) of H O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$_2$$ MPa,$$P_c = 167 \pm 9$$ K, and$$T_c = 159 \pm 6$$ g/cm$$\rho _c = 1.02 \pm 0.01$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$^3$$ O is estimated to be$$_2$$ MPa,$$P_c = 176 \pm 4$$ K, and$$T_c = 177 \pm 2$$ g/cm$$\rho _c = 1.13 \pm 0.01$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effectsmore »$$^3$$ -
Abstract We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ W/$$11\times 10^3$$ at$$\hbox {m}^2$$ K for a bias voltage of$$T=2000$$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ -
Abstract Fix a positive integer
n and a finite field . We study the joint distribution of the rank$${\mathbb {F}}_q$$ , the$${{\,\mathrm{rk}\,}}(E)$$ n -Selmer group , and the$$\text {Sel}_n(E)$$ n -torsion in the Tate–Shafarevich group Equation missing<#comment/>asE varies over elliptic curves of fixed height over$$d \ge 2$$ . We compute this joint distribution in the large$${\mathbb {F}}_q(t)$$ q limit. We also show that the “largeq , then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains. -
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ Counting the number of
k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .Computing the All-Pairsmore »
Certifying that an
n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
Abstract In this article, we study the moduli of irregular surfaces of general type with at worst canonical singularities satisfying
, for any even integer$$K^2 = 4p_g-8$$ . These surfaces also have unbounded irregularity$$p_g\ge 4$$ q . We carry out our study by investigating the deformations of the canonical morphism , where$$\varphi :X\rightarrow {\mathbb {P}}^N$$ is a quadruple Galois cover of a smooth surface of minimal degree. These canonical covers are classified in Gallego and Purnaprajna (Trans Am Math Soc 360(10):5489-5507, 2008) into four distinct families, one of which is the easy case of a product of curves. The main objective of this article is to study the deformations of the other three, non trivial, unbounded families. We show that any deformation of$$\varphi $$ factors through a double cover of a ruled surface and, hence, is never birational. More interestingly, we prove that, with two exceptions, a general deformation of$$\varphi $$ is two-to-one onto its image, whose normalization is a ruled surface of appropriate irregularity. We also show that, with the exception of one family, the deformations of$$\varphi $$ X are unobstructed even though does not vanish. Consequently,$$H^2(T_X)$$ X belongs to a unique irreducible component of the Gieseker moduli space. These irreducible components are uniruled. As a result of all this, we showmore »