Abstract The origin and displacement history of terranes emplaced along the northern margin of North America remain contentious. One of these terranes is the North Slope subterrane of the Arctic Alaska-Chukotka microplate, which is separated from the northwestern margin of Laurentia (Yukon block) by the Porcupine Shear Zone of Alaska and Yukon. Here, we present new field observations, geological mapping, detrital zircon U-Pb geochronology, and sedimentary/igneous geochemistry to elucidate the stratigraphic architecture of deformed pre-Mississippian rocks exposed within the Porcupine Shear Zone, which we distinguish herein as the newly defined Ch’oodeenjìk succession. The oldest rocks in the Ch’oodeenjìk succession consist of siliciclastic strata of the Lahchah and Sunaghun formations (new names), which yield detrital zircon U-Pb age populations of ca. 1050-1250, 1350-1450, 1600-1650, and 2500-2800 Ma (n =800). This succession is overlain by chert-bearing dolostone and limestone of the Caribou Bar formation (new name) that contains vase-shaped microfossils and yields carbonate carbon (δ13Ccarb) and strontium (87Sr/86Sr) isotopic data that range from ca. -3‰ to +3‰ and 0.70636 to 0.70714, respectively. These data suggest that Lahchah, Sunaghun, and Caribou Bar formations are late Tonian in age. These Neoproterozoic rocks are intruded by Late Devonian (Frasnian-Famennian) felsic plutons and mafic dikes, one of which yielded a sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) U-Pb age of 380 ± 4 Ma. Neoproterozoic strata of the Ch’oodeenjìk succession are also unconformably overlain by Upper Devonian-Carboniferous (?) siliciclastic rocks of the Darcy Creek formation (new name), which yields detrital zircon populations of ca. 365–385, 420-470 and 625-835 Ma, in addition to Proterozoic age populations similar to the underlying Tonian strata. Together, these new stratigraphic, geochronological, geochemical, and micropaleontological data indicate that pre-Mississippian rocks exposed within the Porcupine Shear Zone most likely represent a peri-Laurentian crustal fragment that differs from the adjacent Yukon block and North Slope subterrane; thus, the Porcupine Shear Zone represents a fundamental tectonic boundary separating autochthonous Laurentia from various accreted peri-Laurentian crustal fragments.
more »
« less
A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America
Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries.
more »
« less
- Award ID(s):
- 1624131
- PAR ID:
- 10253006
- Date Published:
- Journal Name:
- Geology
- Volume:
- 49
- Issue:
- 5
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 545 to 550
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Competing hypotheses attribute the regional loss of 1.2–1.0 Ga detrital zircon from the Cambrian Sauk Sequence in southwestern North America to differing tectonic controls on surface topography. We test three hypotheses with source‐to‐sink detrital zircon provenance analysis via tandem in situ and isotope dilution U–Pb geochronology paired with geochemical and Hf‐isotope tracers. Our data indicate that the lower‐to‐middle Sixtymile Formation in Grand Canyon was derived from ca. 1.1 Ga rocks of the Llano Uplift and the ca. 539–523 Ma Wichita igneous province, approximately 1400 km away. In contrast, new U–Pb geochronology links the upper Sixtymile and Tapeats formations to the 513–510 Ma Florida Mountains intrusive complex, southern New Mexico, and proximal 1.4 and 1.7 Ga basement approximately 650 km away. We attribute a regional provenance shift to plume–lithosphere interactions on the Iapetan margin, tectonism along ‘leaky’ intracratonic transverse fault zones and the rift‐to‐drift transition on the Cordilleran margin.more » « less
-
Abstract The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin.more » « less
-
ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development.more » « less
-
Kaczmarek, Stephen; Sweet, Dustin (Ed.)ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development.more » « less
An official website of the United States government

