null
(Ed.)
Buildings use 40% of the global energy consumption and emit 30% of the CO2 emissions [1]. Of the total building energy, 30-40% are for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. In the United States, most buildings use forced air technology to deliver heating/cooling to the targeted thermal zones. However, this system may cause complaints about thermal comfort from inhabitants due to excessive draft movement, inhomogeneous conditioning, and difficulty in accurately controlling the temperature for a system serving multiple rooms. Therefore, researchers have suggested using a radiant heating and cooling system as a better alternative to all-air systems to address these issues. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. In the cooling season, the radiant system often works with a separated dehumidifier to meet space latent and sensible cooling load (called separate sensible and latent cooling system SSLC). The SSLC has shown higher efficiency than forced air systems. However, it is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants.
Moreover, the evaluation method for thermal comfort in the current standard is suitable for forced air systems. Therefore, a new method shall be developed to evaluate the radiation system’s thermal comfort. In this paper, we review the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.
more »
« less