skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Untangling the diversity and evolution of tentacles in scallops, oysters, and their relatives (Bivalvia: Pteriomorphia)
Tentacles are fascinating, multifunctional organs found in many aquatic invertebrate groups. In bivalves, tentacles are morphologically diverse, performing protective and sensory roles in taxa from different ecological niches. Such diversity is particularly accentuated in Pteriomorphia, a clade comprising scallops, oysters, file clams, and relatives. However, little is known about the evolution of these organs and their role in bivalve radiation. To test hypotheses of convergent tentacular evolution and a possible association between tentacles and body orientation on the substrate, we first examined tentacle morphology in 108 preserved species representing 15 families across Pteriomorphia. Morphological descriptions of tentacle type (inner mantle fold tentacles, IFT; middle mantle fold tentacles, MFT) and position (marginal and submarginal) are provided, expanding the knowledge of less studied bivalve taxa. Then, we placed the morphological dataset under a molecular phylogenetic framework to estimate ancestral states. IFT had likely four independent origins, while MFT emerged twice independently. After being gained, tentacles have not been lost. In addition, evolution of MFT coincides with transitions in body position with the midsagittal plane parallel to the substrate in the clades of scallops (Pectinida) and oysters (Ostreida). Such a shift could be related to the increase of mantle exposure, favoring the emergence of serially repeated organs, such as tentacles. Altogether, our results support the convergent evolution of tentacles across different taxonomic levels, corroborating the plasticity of the molluscan body and the relevance of evolutionary convergences in the radiation of bivalves.  more » « less
Award ID(s):
1754331
PAR ID:
10253098
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organisms diversity evolution
Volume:
21
Issue:
2021
ISSN:
1618-1077
Page Range / eLocation ID:
145-160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rokas, A (Ed.)
    Abstract The bivalve subclass Pteriomorphia, which includes the economically important scallops, oysters, mussels, and ark clams, exhibits extreme ecological, morphological, and behavioral diversity. Among this diversity are five morphologically distinct eye types, making Pteriomorphia an excellent setting to explore the molecular basis for the evolution of novel traits. Of pteriomorphian bivalves, Limida is the only order lacking genomic resources, greatly limiting the potential phylogenomic analyses related to eyes and phototransduction. Here, we present a limid genome assembly, the disco clam, Ctenoides ales (C. ales), which is characterized by invaginated eyes, exceptionally long tentacles, and a flashing light display. This genome assembly was constructed with PacBio long reads and Dovetail Omni-CTM proximity-ligation sequencing. The final assembly is ∼2.3Gb and over 99% of the total length is contained in 18 pseudomolecule scaffolds. We annotated 41,064 protein coding genes and reported a BUSCO completeness of 91.9% for metazoa_obd10. Additionally, we report a complete and annotated mitochondrial genome, which also had been lacking from Limida. The ∼20Kb mitogenome has 12 protein coding genes, 22 tRNAs, 2 rRNA genes, and a 1,589 bp duplicated sequence containing the origin of replication. The C. ales nuclear genome size is substantially larger than other pteriomorphian genomes, mainly accounted for by transposable element sequences. We inventoried the genome for opsins, the signaling proteins that initiate phototransduction, and found that, unlike its closest eyed-relatives, the scallops, C. ales lacks duplication of the rhabdomeric Gq-protein-coupled opsin that is typically used for invertebrate vision. In fact, C. ales has uncharacteristically few opsins relative to the other pteriomorphian families, all of which have unique expansions of xenopsins, a recently discovered opsin subfamily. This chromosome-level assembly, along with the mitogenome, is a valuable resource for comparative genomics and phylogenetics in bivalves and particularly for the understudied but charismatic limids. 
    more » « less
  2. Abstract Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate. Such transitions are correlated with the development of long siphons in the posterior mantle region. Two independent origins are reconstructed for the posterior lobules on the inner fold, which are associated with intense mucociliary transport, suggesting an important cleansing role in epifaunal mussels. Our results reveal new examples of convergent morphological evolution associated with lifestyle transitions in marine mussels. 
    more » « less
  3. Many marine organisms have a biphasic life cycle that transitions between a swimming larva with a more sedentary adult form. At the end of the first phase, larvae must identify suitable sites to settle and undergo a dramatic morphological change. Environmental factors, including photic and chemical cues, appear to influence settlement, but the sensory receptors involved are largely unknown. We targeted the protein receptor, opsin, which belongs to large superfamily of transmembrane receptors that detects environmental stimuli, hormones, and neurotransmitters. While opsins are well-known for light-sensing, including vision, a growing number of studies have demonstrated light-independent functions. We therefore examined opsin expression in the Pteriomorphia, a large, diverse clade of marine bivalves, that includes commercially important species, such as oysters, mussels, and scallops. Methods Genomic annotations combined with phylogenetic analysis show great variation of opsin abundance among pteriomorphian bivalves, including surprisingly high genomic abundance in many species that are eyeless as adults, such as mussels. Therefore, we investigated the diversity of opsin expression from the perspective of larval development. We collected opsin gene expression in four families of Pteriomorphia, across three distinct larval stages, i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues.Results We found larvae express all opsin types in these bivalves, but opsin expression patterns are largely species-specific across development. Few opsins are expressed in the adult mantle, but many are highly expressed in adult eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins have higher levels of expression in the later larval stages when substrates for settlement are being tested, such as the pediveliger. Conclusion Investigating opsin gene expression during larval development provides crucial insights into their intricate interactions with the surroundings, which may shed light on how opsin receptors of these organisms respond to various environmental cues that play a pivotal role in their settlement process. 
    more » « less
  4. Abstract Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the United Nations FAO Production Database, and investigate their diversity, distribution and extinction vulnerability using a metric based on ecological traits and evolutionary history. The added species shift the richness hotspot of exploited species from the northeast Atlantic to the west Pacific, with 55% of bivalve families being exploited, concentrated mostly in two major clades but all major body plans. We find that exploited species tend to be larger in size, occur in shallower waters, and have larger geographic and thermal ranges—the last two traits are known to confer extinction-resistance in marine bivalves. However, exploited bivalve species in certain regions such as the tropical east Atlantic and the temperate northeast and southeast Pacific, are among those with high intrinsic vulnerability and are a large fraction of regional faunal diversity. Our results pinpoint regional faunas and specific taxa of likely concern for management and conservation. 
    more » « less
  5. Evolutionary adaptation to novel, specialized modes of life is often associated with a close mapping of form to the new function, resulting in narrow morphological disparity. For bivalve molluscs, endolithy (rock-boring) has biomechanical requirements thought to diverge strongly from those of ancestral functions. However, endolithy in bivalves has originated at least eight times. Three-dimensional morphometric data representing 75 species from approximately 94% of extant endolithic genera and families, along with 310 non-endolithic species in those families, show that endolithy is evolutionarily accessible from many different morphological starting points. Although some endoliths appear to converge on certain shell morphologies, the range of endolith shell form is as broad as that belonging to any other bivalve substrate use. Nevertheless, endolithy is a taxon-poor function in Bivalvia today. This limited richness does not derive from origination within source clades having significantly low origination or high extinction rates, and today's endoliths are not confined to low-diversity biogeographic regions. Instead, endolithy may be limited by habitat availability. Both determinism (as reflected by convergence among distantly related taxa) and contingency (as reflected by the endoliths that remain close to the disparate morphologies of their source clades) underlie the occupation of endolith morphospace. 
    more » « less