skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers
The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies.  more » « less
Award ID(s):
1914680
PAR ID:
10253499
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annals of Biomedical Engineering
ISSN:
0090-6964
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tumor microenvironment is a complex niche consisting of cancer cells and stromal cells in a network of extracellular matrix proteins and various soluble factors. Dynamic interactions among cellular and non-cellular components of the tumor microenvironment regulate tumor initiation and progression. Fibroblasts are the most abundant stromal cell type and dynamically interact with cancer cells both in primary tumors and in metastases. Cancer cells activate resident fibroblasts to produce and secrete soluble signaling molecules that support proliferation, migration, matrix invasion, and drug resistance of cancer cell and tumor angiogenesis. In recent years, various forms of three-dimensional tumor models have been developed to study tumor–stromal interactions and to identify anti-cancer drugs that block these interactions. There is currently a technological gap in development of tumor models that are physiologically relevant, scalable, and allow convenient, on-demand addition of desired components of the tumor microenvironment. In this review, we discuss three studies from our group that focus on developing bioengineered models to study tumor-stromal signaling. We will present these studies chronologically and based on their increasing complexity. We will discuss the validation of the models using a CXCL12-CXCR4 chemokine-receptor signaling present among activated fibroblasts and breast cancer cells in solid tumors, highlight the advantages and shortcomings of the models, and conclude with our perspectives on their applications. Impact statement Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs. 
    more » « less
  2. Three-dimensional (3D) tumor spheroid models have gained increased recognition as important tools in cancer research and anti-cancer drug development. However, currently available imaging approaches employed in high-throughput screening drug discovery platforms e.g. bright field, phase contrast, and fluorescence microscopies, are unable to resolve 3D structures deep inside (>50 μm) tumor spheroids. In this study, we established a label-free, non-invasive optical coherence tomography (OCT) imaging platform to characterize 3D morphological and physiological information of multicellular tumor spheroids (MCTS) growing from ~250 μm up to ~600 μm in height over 21 days. In particular, tumor spheroids of two cell lines glioblastoma (U-87 MG) and colorectal carcinoma (HCT 116) exhibited distinctive evolutions in their geometric shapes at late growth stages. Volumes of MCTS were accurately quantified using a voxel-based approach without presumptions of their geometries. In contrast, conventional diameter-based volume calculations assuming perfect spherical shape resulted in large quantification errors. Furthermore, we successfully detected necrotic regions within these tumor spheroids based on increased intrinsic optical attenuation, suggesting a promising alternative of label-free viability tests in tumor spheroids. Therefore, OCT can serve as a promising imaging modality to characterize morphological and physiological features of MCTS, showing great potential for high-throughput drug screening. 
    more » « less
  3. null (Ed.)
    Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels — interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase the risk of developing drug resistance. Although the existence of tumor heterogeneity has been known for two centuries, a clear understanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH). The coexistence of different subpopulations within a single tumor has been shown to play crucial roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory and public goods game, often invoked in the context of the tragedy of commons, we explore how the interactions among subclone populations influence the establishment of ITH. By using an evolutionary model, which unifies several experimental results in distinct cancer types, we develop quantitative theoretical models for explaining data from in vitro experiments involving pancreatic cancer as well as in vivo data in glioblastoma multiforme. Such physical and mathematical models complement experimental studies, and could optimistically provide new ideas for the design of efficacious therapies for cancer patients. 
    more » « less
  4. Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors. 
    more » « less
  5. 153 Background: Conventional monolayer cell cultures and xenograft models, while useful and economical in early drug discovery, cannot predict clinical efficacy. Further, preclinical screening assays that rely on differential metabolic activity between separate control and treated wells are incapable of capturing phenotypic response and could overstate efficacy for cells with high rates of proliferation. Consequently, over 95% of anticancer agents that show efficacy in preclinical studies, fail in clinical trials. Recently, patient-derived organoid (PDO) models have been utilized in developing platforms to predict clinical efficacy of preclinical formulations. If successful, such predictive ex vivo technologies could revolutionize cancer treatment by reducing cost and time-to-market for new, more effective therapeutics. Objective: Characterize a novel bioprinted organoid tumor (BOT) high-throughput screening ex vivo platform for drug response prediction (DRP) with known proteosome and survivn inhibitors in colorectal cancer. Methods: Bioink for 3D printing BOTs was prepared with HT-29 cells, an established NCI-60 human colorectal adenocarcinoma cell line with known sensitivity to proteosome and survivin inhibitors. Bioink was deposited layer-by-layer on multiple substrates, in various geometrical configurations, and cured in stages to allow cells and matrix to self-assemble with limited degrees of freedom. BOTs were screened 24h and 48h after printing with proteosome inhibitor Bortezomib and survivin inhibitor YM-155. BOTs were evaluated 48h and 72h after treatment using immunofluorescence live/dead assay. Morphological phenotypic changes resulting from treatment were also recorded. Results: Proteasome and survivin inhibitors have been reported to inhibit proliferation and induce cell death in colorectal cancer cells. A dose dependent response was observed for both agents in our novel BOT HTS thereby validating the platform. In addition, characteristic self-assembly of HT-29 cells was observed to be disrupted at effective doses and at certain concentrations below the effective dose. Traditional ATP assays are incapable of recording such phenotypic modulation. Further, a higher proliferation profile was observed in untreated BOTs suggesting that use of independent control wells in traditional assays could overstate efficacy of treatment. Conclusions: Functional high-throughput ex vivo DRP technologies have the potential to transform cancer treatment – from bench to bedside – along the drug discovery to market roadmap for much needed novel anticancer agents. 
    more » « less