Stochastic differential games have been used extensively to model agents' competitions in finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel and efficient tool for finding Markovian Nash equilibrium of large
Deep Fictitious Play for Finding Markovian Nash Equilibrium in Multi-Agent Games
We propose a deep neural network-based algorithm to identify the Markovian Nash equilibrium of general large ๐-player stochastic differential games. Following the idea of fictitious play, we recast the ๐-player game into ๐ decoupled decision problems (one for each player) and solve them iteratively. The individual decision problem is characterized by a semilinear Hamilton-Jacobi-Bellman equation, to solve which we employ the recently developed deep BSDE method. The resulted algorithm can solve large ๐-player games for which conventional numerical methods would suffer from the curse of dimensionality. Multiple numerical examples involving identical or heterogeneous agents, with risk-neutral or risk-sensitive objectives, are tested to validate the accuracy of the proposed algorithm in large group games. Even for a fifty-player game with the presence of common noise, the proposed algorithm still finds the approximate Nash equilibrium accurately, which, to our best knowledge, is difficult to achieve by other numerical algorithms.
more »
« less
- Award ID(s):
- 1953035
- PAR ID:
- 10253642
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 107
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 221-245
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into\begin{document}$ N $\end{document} sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an\begin{document}$ N $\end{document} -Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.\begin{document}$ \epsilon $\end{document} -
Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algo- rithm for two-player zero-sum games that has been empirically shown to find approximate Nash equilibria in large games. Although PSRO is guaranteed to converge to an approximate Nash equilibrium and can handle continuous actions, it may take an exponential number of iterations as the number of information states (infostates) grows. We propose Extensive-Form Double Oracle (XDO), an extensive-form double oracle algorithm for two-player zero-sum games that is guar- anteed to converge to an approximate Nash equilibrium linearly in the number of infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO mixes best responses at every infostate. We also introduce Neural XDO (NXDO), where the best response is learned through deep RL. In tabular experiments on Leduc poker, we find that XDO achieves an approximate Nash equilibrium in a number of iterations an order of magnitude smaller than PSRO. Experiments on a modified Leduc poker game and Oshi-Zumo show that tabular XDO achieves a lower exploitability than CFR with the same amount of computation. We also find that NXDO outperforms PSRO and NFSP on a sequential multidimensional continuous-action game. NXDO is the first deep RL method that can find an approximate Nash equilibrium in high-dimensional continuous-action sequential games. Experiment code is available at https://github.com/indylab/nxdo.more » « less
-
Decision-making in multi-player games can be extremely challenging, particularly under uncertainty. In this work, we propose a new sample-based approximation to a class of stochastic, general-sum, pure Nash games, where each player has an expected-value objective and a set of chance constraints. This new approximation scheme inherits the accuracy of objective approximation from the established sample average approximation (SAA) method and enjoys a feasibility guarantee derived from the scenario optimization literature. We characterize the sample complexity of this new game-theoretic approximation scheme, and observe that high accuracy usually requires a large number of samples, which results in a large number of sampled constraints. To accommodate this, we decompose the approximated game into a set of smaller games with few constraints for each sampled scenario, and propose a decentralized, consensus-based ADMM algorithm to efficiently compute a generalized Nash equilibrium (GNE) of the approximated game. We prove the convergence of our algorithm to a GNE and empirically demonstrate superior performance relative to a recent baseline algorithm based on ADMM and interior point method.more » « less
-
Markov games model interactions among multiple players in a stochastic, dynamic environment. Each player in a Markov game maximizes its expected total discounted reward, which depends upon the policies of the other players. We formulate a class of Markov games, termed affine Markov games, where an affine reward function couples the playersโ actions. We introduce a novel solution concept, the soft-Bellman equilibrium, where each player is boundedly rational and chooses a soft-Bellman policy rather than a purely rational policy as in the well-known Nash equilibrium concept. We provide conditions for the existence and uniqueness of the soft-Bellman equilibrium and propose a nonlinear least-squares algorithm to compute such an equilibrium in the forward problem. We then solve the inverse game problem of inferring the playersโ reward parameters from observed state-action trajectories via a projected-gradient algorithm. Experiments in a predator-prey OpenAI Gym environment show that the reward parameters inferred by the proposed algorithm outper- form those inferred by a baseline algorithm: they reduce the Kullback-Leibler divergence between the equilibrium policies and observed policies by at least two orders of magnitude.more » « less
-
Jin, Shi (Ed.)In this paper, we apply the idea of fictitious play to design deep neural networks (DNNs), and develop deep learning theory and algorithms for computing the Nash equilibrium of asymmetric N-player non-zero-sum stochastic differential games, for which we refer as deep fictitious play, a multi-stage learning process. Specifically at each stage, we propose the strategy of letting individual player optimize her own payoff subject to the other playersโ previous actions, equivalent to solving N decoupled stochastic control optimization problems, which are approximated by DNNs. Therefore, the fictitious play strategy leads to a structure consisting of N DNNs, which only communicate at the end of each stage. The resulting deep learning algorithm based on fictitious play is scalable, parallel and model-free, i.e., using GPU parallelization, it can be applied to any N-player stochastic differential game with different symmetries and heterogeneities (e.g., existence of major players). We illustrate the performance of the deep learning algorithm by comparing to the closed-form solution of the linear quadratic game. Moreover, we prove the convergence of fictitious play under appropriate assumptions, and verify that the convergent limit forms an open-loop Nash equilibrium. We also discuss the extensions to other strategies designed upon fictitious play and closed-loop Nash equilibrium in the end.more » « less