skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Tuning the Transconductance of Organic Electrochemical Transistors
Abstract Organic electrochemical transistors (OECTs) operate at very low voltages, transduce ions into electronic signals, and reach extremely large transconductance values, making them ideally suited for bio‐sensing applications. However, despite their promising performance, the dependence of their maximum transconductance on device geometry and applied voltages are not correctly captured by current capacitive device models. Here, current scaling laws are revised in the light of a recently developed 2D device model that adequately accounts for drift and diffusion of ions inside the polymer channel. It is shown that the maximum transconductance of the devices is found at the transition between the depletion and accumulation region of the transistors, which as well provides an explanation for the observed shift of the transconductance peak with geometric dimensions and the drain potential. Overall, the results provide a better understanding of the working mechanisms of OECTs, and facilitate design rules to optimize OECT performance further.  more » « less
Award ID(s):
1750011
PAR ID:
10254696
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
3
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organic electrochemical transistors (OECTs) have exhibited promising performance as transducers and amplifiers of low potentials due to their exceptional transconductance, enabled by the volumetric charging of organic mixed ionic/electronic conductors (OMIECs) employed as the channel material. OECT performance in aqueous electrolytes as well as the OMIECs’ redox activity has spurred a myriad of studies employing OECTs as chemical transducers. However, the OECT's large (potentiometrically derived) transconductance is not fully leveraged in common approaches that directly conduct chemical reactions amperometrically within the OECT electrolyte with direct charge transfer between the analyte and the OMIEC, which results in sub‐unity transduction of gate to drain current. Hence, amperometric OECTs do not truly display current gains in the traditional sense, falling short of the expected transistor performance. This study demonstrates an alternative device architecture that separates chemical transduction and amplification processes on two different electrochemical cells. This approach fully utilizes the OECT's large transconductance to achieve current gains of 103and current modulations of four orders of magnitude. This transduction mechanism represents a general approach enabling high‐gain chemical OECT transducers. 
    more » « less
  2. Abstract PCPDTBT‐SO3K (CPE‐K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural‐activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE‐K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE‐K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE‐K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices. 
    more » « less
  3. Abstract Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low‐powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution‐processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air‐sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low‐powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs. 
    more » « less
  4. We examine if the bundling of semiconducting carbon nanotubes (CNTs) can increase the transconductance and on-state current density of field effect transistors (FETs) made from arrays of aligned, polymer-wrapped CNTs. Arrays with packing density ranging from 20 to 50 bundles  μm −1 are created via tangential flow interfacial self-assembly, and the transconductance and saturated on-state current density of FETs with either (i) strong ionic gel gates or (ii) weak 15 nm SiO 2 back gates are measured vs the degree of bundling. Both transconductance and on-state current significantly increase as median bundle height increases from 2 to 4 nm, but only when the strongly coupled ionic gel gate is used. Such devices tested at −0.6 V drain voltage achieve transconductance as high as 50 μS per bundle and 2 mS  μm −1 and on-state current as high as 1.7 mA  μm −1 . At low drain voltages, the off-current also increases with bundling, but on/off ratios of ∼10 5 are still possible if the largest (95th percentile) bundles in an array are limited to ∼5 nm in size. Radio frequency devices with strong, wraparound dielectric gates may benefit from increased device performance by using moderately bundled as opposed to individualized CNTs in arrays. 
    more » « less
  5. Abstract Organic electrochemical transistors (OECTs) exhibit strong potential for various applications in bioelectronics, especially as miniaturized, point‐of‐care biosensors, because of their efficient transducing ability. To date, however, the majority of reported OECTs have relied on p‐type (hole transporting) polymer mixed conductors, due to the limited number of n‐type (electron transporting) materials suitable for operation in aqueous electrolytes, and the low performance of those which exist. It is shown that a simple solvent‐engineering approach boosts the performance of OECTs comprising an n‐type, naphthalenediimide‐based copolymer in the channel. The addition of acetone, a rather bad solvent for the copolymer, in the chloroform‐based polymer solution leads to a three‐fold increase in OECT transconductance, as a result of the simultaneous increase in volumetric capacitance and electron mobility in the channel. The enhanced electrochemical activity of the polymer film allows high‐performance glucose sensors with a detection limit of 10 × 10−6mof glucose and a dynamic range of more than eight orders of magnitude. The approach proposed introduces a new tool for concurrently improving the conduction of ionic and electronic charge carriers in polymer mixed conductors, which can be utilized for a number of bioelectronic applications relying on efficient OECT operation. 
    more » « less