skip to main content


Title: Flood regime alters the abiotic correlates of riparian vegetation
Abstract Questions

Predicting the influence of climate change on riparian plant communities improves management strategies. The sensitivity of riparian vegetation to climate and other abiotic factors depends on interactions between properties of the ecosystem, like flood regime, and plant characteristics. To explore these interactions, we addressed three questions: (a) does the composition and diversity of riparian vegetation vary with the flood regime; (b) do abiotic correlates of vegetation, including climate and groundwater, differ between sites that flood compared to locations that did not experience floods; and (c) which plant functional groups account for differential plant community sensitivity to abiotic factors between flood regimes?

Location

Middle Rio Grande Valley, New Mexico.

Methods

We used long‐term observations of plant community composition, groundwater depth, precipitation and interpolated temperature from 24 sites spanning 210 km of the Rio Grande riparian cottonwood–willow forest to explore the relative importance of climate and hydrologic correlates of riparian vegetation diversity and composition.

Results

Riparian plant diversity was higher at sites flooding compared to non‐flooding sites. Plant diversity positively tracked shallower groundwater depth at flooding sites, but was best predicted by intra‐annual groundwater variability at non‐flooding sites. Plant community composition correlated with groundwater depth and air temperature at all sites, but at non‐flooding sites, also with intra‐annual groundwater variability and precipitation. Relationships between native plant cover and potential environmental drivers diverged strongly between the two flood regimes; non‐native plant cover had only weak relationships with most environmental predictors.

Conclusions

The current flood regime of a site determined the climate and hydrologic factors that best predicted riparian plant community composition and diversity. Relationships between plant diversity or total cover and groundwater, temperature, precipitation, or groundwater variability can change in strength or direction depending on a site's flood history, highlighting the importance of flood regime to predicting the sensitivity of riparian woodlands to future environmental change.

 
more » « less
Award ID(s):
1655499
NSF-PAR ID:
10367804
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Applied Vegetation Science
Volume:
24
Issue:
2
ISSN:
1402-2001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hui, Dafeng (Ed.)
    Abstract Aims Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to changes in the mean and variance of groundwater resources. Methods We leveraged spatiotemporal variation in long-term datasets of riparian vegetation cover and groundwater levels to build the first groundwater sensitivity functions for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered with declining groundwater stores. Important Findings Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater inter-annual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the short time series (16 years) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores. 
    more » « less
  2. Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to future changes in both the mean and variance of groundwater resources. We leveraged spatiotemporal variation in a long-term dataset of riparian vegetation cover to build the first groundwater sensitivity functions (GSFs) for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered on top of declining groundwater stores. Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater interannual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the relatively short time series (16 y) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores. 
    more » « less
  3. Abstract Aim

    How climate change will alter plant functional group composition is a critical question given the well‐recognized effects of plant functional groups on ecosystem services. While climate can have direct effects on different functional groups, indirect effects mediated through changes in biotic interactions have the potential to amplify or counteract direct climatic effects. As a result, identifying the underlying causes for climate effects on plant communities is important to conservation and restoration initiatives.

    Location

    Western Pacific Northwest (Oregon and Washington), USA.

    Methods

    Utilizing a 3‐year experiment in three prairie sites across a 520‐km latitudinal climate gradient, we manipulated temperature and precipitation and recorded plant cover at the peak of each growing season. We used structural equation models to examine how abiotic drivers (i.e. temperature, moisture and soil nitrogen) controlled functional group cover, and how these groups in turn determined overall plant diversity.

    Results

    Warming increased the cover of introduced annual species, causing subsequent declines in other functional groups and diversity. While we found direct effects of temperature and moisture on extant vegetation (i.e. native annuals, native perennials and introduced perennials), these effects were typically amplified by introduced annuals. Competition for moisture and light or space, rather than nitrogen, were critical mechanisms of community change in this seasonally water‐limited Mediterranean‐climate system. Diversity declines were driven by reductions in native annual cover and increasing dominance by introduced annuals.

    Main conclusions

    A shift towards increasing introduced annual dominance in this system may be akin to that previously experienced in California grasslands, resulting in the “Californication” of Pacific Northwest prairies. Such a phenomenon may challenge local land managers in their efforts to maintain species‐rich and functionally diverse prairie ecosystems in the future.

     
    more » « less
  4. This study originated with the objective of parameterizing riparian evapotranspiration (ET) in the water budget of the middle Rio Grande of New Mexico.  We hypothesized that flooding and invasions of non-native species would impact the ecosystem's use of water.  Our objectives were to measure and compare the ET of native (Rio Grande cottonwood, Populus deltoides ssp. wizleni) and non-native (saltcedar, Tamarix chinensis, Russian olive, Eleagnus angustifolia) bosque (woodland) communities and to evaluate how water use is affected by climatic variability resulting in high river flows and flooding as well as drought conditions and deep water tables.  This data set contains water table levels monitored at nine sites along the Rio Grande riparian corridor between Albuquerque and Bosque del Apache National Wildlife Refuge.  Data date to 1999.  Two sites remain active and are well into their second decade of monitoring.  One is in a xero-riparian, non-flooding, saltcedar woodland within the Sevilleta National Wildlife Refuge.  The other is in a dense, monotypic saltcedar thicket at the Bosque del Apache NWR that is subject to flood pulses associated with high river flows.   
    more » « less
  5. Abstract Questions

    How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient?

    Location

    1700‐km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia.

    Methods

    The Braun‐Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest–tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors.

    Results

    Clear, mostly non‐linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest–tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age.

    Conclusions

    Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground‐based vegetation data for satellite‐based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on‐going climate change.

     
    more » « less