Title: Hardness of Approximation for Orienteering with Multiple Time Windows
Vehicle routing problems are a broad class of combinatorial optimization problems that can be formulated as the problem of finding a tour in a weighted graph that optimizes some function of the visited vertices. For instance, a canonical and extensively studied vehicle routing problem is the orienteering problem where the goal is to find a tour that maximizes the number of vertices visited by a given deadline. In this paper, we consider the computational tractability of a well-known generalization of the orienteering problem called the Orient-MTW problem. The input to Orient-MTW consists of a weighted graph G(V, E) where for each vertex v ∊ V we are given a set of time instants Tv ⊆ [T], and a source vertex s. A tour starting at s is said to visit a vertex v if it transits through v at any time in the set Tv. The goal is to find a tour starting at the source vertex that maximizes the number of vertices visited. It is known that this problem admits a quasi-polynomial time O(log OPT)-approximation ratio where OPT is the optimal solution value but until now no hardness better than an APX-hardness was known for this problem. Our main result is an -hardness for this problem that holds even when the underlying graph G is an undirected tree. This is the first super-constant hardness result for the Orient-MTW problem. The starting point for our result is the hardness of the SetCover problem which is known to hold on instances with a special structure. We exploit this special structure of the hard SetCover instances to first obtain a new proof of the APX-hardness result for Orient-MTW that holds even on trees of depth 2. We then recursively amplify this constant factor hardness to an -hardness, while keeping the resulting topology to be a tree. Our amplified hardness proof crucially utilizes a delicate concavity property which shows that in our encoding of SetCover instances as instances of the Orient-MTW problem, whenever the optimal cost for SetCover instance is large, any tour, no matter how it allocates its time across different sub-trees, can not visit too many vertices overall. We believe that this reduction template may also prove useful in showing hardness of other vehicle routing problems. more »« less
Becker, Amariah; Klein, Philip N; Schild, Aaron
(, Proceedings of the 16th International Symposium on Algorithms and Data Structures, WADS 2019)
null
(Ed.)
The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, the client-to-client distances up to a small additive error proportional to client distances to the depot.
Chuzhoy, Julia; Tan, Zihan
(, STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing)
We consider the classical Minimum Crossing Number problem: given an n-vertex graph G, compute a drawing of G in the plane, while minimizing the number of crossings between the images of its edges. This is a fundamental and extensively studied problem, whose approximability status is widely open. In all currently known approximation algorithms, the approximation factor depends polynomially on Δ – the maximum vertex degree in G. The best current approximation algorithm achieves an O(n1/2−· (Δ·logn))-approximation, for a small fixed constant є, while the best negative result is APX-hardness, leaving a large gap in our understanding of this basic problem. In this paper we design a randomized O(2O((logn)7/8loglogn)·(Δ))-approximation algorithm for Minimum Crossing Number. This is the first approximation algorithm for the problem that achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex degree is subpolynomial in n). In order to achieve this approximation factor, we design a new algorithm for a closely related problem called Crossing Number with Rotation System, in which, for every vertex v∈ V(G), the circular ordering, in which the images of the edges incident to v must enter the image of v in the drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Mahabadi, Tan ’20] immediately yields the improved approximation algorithm for Minimum Crossing Number.
The multiple traveling salesman problem (mTSP) is an important variant of metric TSP where a set of k salespeople together visit a set of n cities while minimizing the total cost of the k routes under a given cost metric. The mTSP problem has applications to many real-life problems such as vehicle routing. Rothkopf [14] introduced another variant of TSP called many-visits TSP (MV-TSP) where a request r(v) is given for each city v and a single salesperson needs to visit each city r(v) times and return to his starting point. We note that in MV-TSP the cost of loops is positive, so a TSP solution cannot be trivially extended (without an increase in cost) to a MV-TSP solution by consecutively visiting each vertex to satisfy the visit requirements. A combination of mTSP and MV-TSP, called many-visits multiple TSP (MV-mTSP) was studied by Berczi, Mnich, and Vincze [3] where the authors give approximation algorithms for various variants of MV-mTSP. In this work, we show a simple linear programming (LP) based reduction that converts a mTSP LP-based algorithm to an LP-based algorithm for MV-mTSP with the same approximation factor. We apply this reduction to improve or match the current best approximation factors of several variants of the MV-mTSP. Our reduction shows that the addition of visit requests r(v) to mTSP does not make the problem harder to approximate even when r(v) is exponential in the number of vertices. To apply our reduction, we either use existing LP-based algorithms for mTSP variants or show that several existing combinatorial algorithms for mTSP variants can be interpreted as LP-based algorithms. This allows us to apply our reduction to these combinatorial algorithms while achieving improved guarantees.
Chudnovsky, Maria.; Pillipczuk, Marcin.; Pillipczuk, Mihal; and Thomasse, Stephan.
(, Proceedings of the annual ACMSIAM symposium on discrete algorithms)
In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set.
Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be stated as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem.
Garg, Naveen, Khanna, Sanjeev, and Kumar, Amit. Hardness of Approximation for Orienteering with Multiple Time Windows. Retrieved from https://par.nsf.gov/biblio/10255449. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms .
Garg, Naveen, Khanna, Sanjeev, & Kumar, Amit. Hardness of Approximation for Orienteering with Multiple Time Windows. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, (). Retrieved from https://par.nsf.gov/biblio/10255449.
Garg, Naveen, Khanna, Sanjeev, and Kumar, Amit.
"Hardness of Approximation for Orienteering with Multiple Time Windows". Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (). Country unknown/Code not available. https://par.nsf.gov/biblio/10255449.
@article{osti_10255449,
place = {Country unknown/Code not available},
title = {Hardness of Approximation for Orienteering with Multiple Time Windows},
url = {https://par.nsf.gov/biblio/10255449},
abstractNote = {Vehicle routing problems are a broad class of combinatorial optimization problems that can be formulated as the problem of finding a tour in a weighted graph that optimizes some function of the visited vertices. For instance, a canonical and extensively studied vehicle routing problem is the orienteering problem where the goal is to find a tour that maximizes the number of vertices visited by a given deadline. In this paper, we consider the computational tractability of a well-known generalization of the orienteering problem called the Orient-MTW problem. The input to Orient-MTW consists of a weighted graph G(V, E) where for each vertex v ∊ V we are given a set of time instants Tv ⊆ [T], and a source vertex s. A tour starting at s is said to visit a vertex v if it transits through v at any time in the set Tv. The goal is to find a tour starting at the source vertex that maximizes the number of vertices visited. It is known that this problem admits a quasi-polynomial time O(log OPT)-approximation ratio where OPT is the optimal solution value but until now no hardness better than an APX-hardness was known for this problem. Our main result is an -hardness for this problem that holds even when the underlying graph G is an undirected tree. This is the first super-constant hardness result for the Orient-MTW problem. The starting point for our result is the hardness of the SetCover problem which is known to hold on instances with a special structure. We exploit this special structure of the hard SetCover instances to first obtain a new proof of the APX-hardness result for Orient-MTW that holds even on trees of depth 2. We then recursively amplify this constant factor hardness to an -hardness, while keeping the resulting topology to be a tree. Our amplified hardness proof crucially utilizes a delicate concavity property which shows that in our encoding of SetCover instances as instances of the Orient-MTW problem, whenever the optimal cost for SetCover instance is large, any tour, no matter how it allocates its time across different sub-trees, can not visit too many vertices overall. We believe that this reduction template may also prove useful in showing hardness of other vehicle routing problems.},
journal = {Proceedings of the ACM-SIAM Symposium on Discrete Algorithms},
author = {Garg, Naveen and Khanna, Sanjeev and Kumar, Amit},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.