Inclination of unpatterned, linearly polarized illumination in the plane of the electric field oscillation effected increased directional feature alignment and decreased off-axis order in Se–Te deposits generated by inorganic phototropic growth relative to that produced using normal incidence. Optically based growth simulations reproduced the experimental results indicating a photonic basis for the morphology change. Modeling of the light scattering at the growth interface revealed that illumination inclination enhances scattering that localizes the optical field along the polarization plane and suppresses cooperativity in defect-driven scattering. Thus, the symmetry of the deposited structures increased as the asymmetry of the illumination increased, as measured by the inclination of the illumination incidence away from the surface normal.
more »
« less
Optically tunable mesoscale CdSe morphologies via inorganic phototropic growth
Inorganic phototropic growth using only spatially conformal illumination generated Se–Cd films that exhibited precise light-defined mesoscale morphologies including highly ordered, anisotropic, and periodic ridge and trench nanotextures over entire macroscopic substrates. Growth was accomplished via a light-induced electrochemical method using an optically and chemically isotropic solution, an unpatterned substrate, and unstructured, incoherent, low-intensity illumination in the absence of chemical directing agents or physical templates and masks. The morphologies were defined by the illumination inputs: the nanotexture long axes aligned parallel to the optical E-field vector, and the feature sizes and periods scaled with the wavelength. Optically based modeling of the growth closely reproduced the experimental results, confirming the film morphologies were fully determined by the light–matter interactions during growth. Solution processing of the Se–Cd films resulted in stoichiometric, crystalline CdSe films that also exhibited ordered nanotextures, demonstrating that inorganic phototropic growth can effect tunable, template-free generation of ordered CdSe nanostructures over macroscopic length scales.
more »
« less
- Award ID(s):
- 1905963
- PAR ID:
- 10255482
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 36
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 12412 to 12417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The role of nucleation was investigated during phototropic growth of Se–Te. Under low levels of mass deposition (mass equivalent of −3.75 mC cm −2 of charge passed) that produced small nucleate spacings, patterns in photoelectrochemically deposited Se–Te films converged at relatively earlier levels of mass deposition and ultimately exhibited higher pattern fidelity throughout pattern development as compared to pattern formation from larger initial nucleate spacings. Consistently, use of an applied striking potential during very early levels of mass deposition produced more spatially random dark-phase electrodeposited nucleates and led to phototropic Se–Te photoelectrodeposited films that exhibited improved pattern fidelity relative to depositions performed with no striking step. Collectively, the data indicate that increases in randomness and spatial disorder of the dispersion of the initial nucleates produces increases in the fidelity and spatial order in the resulting phototropically grown electrodeposits.more » « less
-
The use of nanoparticle-in-matrix composites is a common motif among a broad range of nanoscience applications and is of particular interest to the thermal sciences community. To explore this morphological theme, we create crystalline inorganic composites with nanoparticle volume fractions ranging from 0 to ∼100% using solution-phase processing. We synthesize these composites by mixing colloidal CdSe nanocrystals and In 2 Se 3 metal–chalcogenide complex (MCC) precursor in the solution-phase and then thermally transform the MCC precursor into a crystalline In 2 Se 3 matrix. We find rich structural and chemical interactions between the CdSe nanocrystals and the In 2 Se 3 matrix, including alterations in In 2 Se 3 grain size and orientation as well as the formation of a ternary phase, CdIn 2 Se 4 . The average thermal conductivities of the 100% In 2 Se 3 and ∼100% CdSe composites are 0.32 and 0.53 W m −1 K −1 , respectively. These thermal conductivities are remarkably low for inorganic crystalline materials and are comparable to amorphous polymers. With the exception of the ∼100% CdSe samples, the thermal conductivities of these nanocomposites are insensitive to CdSe volume fraction and are ∼0.3 W m −1 K −1 in all cases. We attribute this insensitivity to competing effects that arise from structural morphology changes during composite formation. This insensitivity to CdSe volume fraction also suggests that very low thermal conductivities can be reliably achieved using this solution-phase route to nanocomposites.more » « less
-
Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated.more » « less
-
We report on the growth, grain enhancement, doping, and electron mobility of cadmium selenide (CdSe) thin films deposited using the thermal evaporation method. The optical measurement shows CdSe is a direct bandgap material with an optical bandgap (Egap) of 1.72 eV. CdSe thin films were deposited on fluorine doped tin oxide glass substrates with different thicknesses, and grain size and mobility were measured on the films. CdCl2 was deposited on the films, and the films were subjected to high temperature treatment for several hours. It was found that both grain sizes increased significantly after CdCl2 treatment. The mobility of electrons was measured using the space charge limited current technique, and it was found that the mobility increased significantly after CdCl2 treatment. It was discovered that postdeposition selenization further improved the electrical properties of CdSe thin films by increasing the electron mobility-lifetime product and the photo/dark conductivity ratio. CdSe films after postselenization also showed significantly lower values for midgap states and Urbach energies for valence band tail states.more » « less
An official website of the United States government

