skip to main content


Title: Understanding Support Effects of ZnO‐Promoted Co Catalysts for Syngas Conversion to Alcohols Using Atomic Layer Deposition
Abstract

Co2C, an emerging catalyst for the conversion of syngas to oxygenates, shows support‐sensitive behavior that has not yet been fully explained. Here, we characterize Co catalysts modified with ZnO atomic layer deposition on SiO2, carbon, CeO2, and Al2O3supports. We find that under syngas conditions, ZnO‐promoted Co transforms into Co2C on SiO2, carbon, and CeO2, but not on Al2O3. Moreover, the support affects the extent of carburization: while the SiO2‐supported catalyst carburizes completely, carbon‐ and CeO2‐supported catalysts show incomplete conversion of Co to Co2C. These three catalysts also exhibit different oxygenate selectivities. In contrast, the modified Al2O3‐supported catalyst retains the Fischer‐Tropsch catalytic properties of metallic Co. By depositing increasing amounts of Al2O3by ALD on the SiO2support, decreasing Co2C formation and oxygenate selectivity occurs.In‐situXANES reveals that Al2O3prevents Co2C formation by enabling the ZnO to restructure into ZnAl2O4during reduction. Thus, in addition to modifying the active catalyst phase, the promoter can also strongly interact with the support, significantly impacting catalyst performance.

 
more » « less
NSF-PAR ID:
10256309
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemCatChem
Volume:
13
Issue:
2
ISSN:
1867-3880
Page Range / eLocation ID:
p. 770-781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH.

     
    more » « less
  2. In this report, CeO 2 and SiO 2 supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher CH 4 and CO 2 conversion and syngas (CO + H 2 ) yield than those under thermal catalysis only conditions. According to the H 2 -TPR, CO 2 -TPD, and CO-TPD profiles, reducible CeO 2 supported Ru catalysts presented better activity compared to their irreducible SiO 2 supported Ru counterparts. For instance, the molar concentrations of CO and H 2 were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in CH 4 and C–O bonds in CO 2 , which significantly improves the CH 4 /CO 2 conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/CeO 2 nanorods sample showed the highest catalytic activity with 51% CH 4 and 37% CO 2 conversion compared to 1 wt% Ru/CeO 2 nanocubes (40% CH 4 and 30% CO 2 ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the CeO 2 nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects. 
    more » « less
  3. Abstract

    Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support.

     
    more » « less
  4. Abstract

    The design of supported heterogeneous catalysts requires a detailed understanding of the structure and chemistry of the active surface. Although the chemical components of the active phase, support material, and process feed are typically considered to be the most important factors governing catalyst structure and performance, many common commercial supports contain trace impurities, which can have profound effects on catalyst properties. In this work, we study silica‐supported cobalt‐based catalysts, which are widely used in syngas conversion to value‐added products. Supported metallic Co is a commercial Fischer‐Tropsch catalyst, whereas Co2C has shown promise for the direct conversion of syngas to higher oxygenates. This study examines the effects of Na, a commonly detected support impurity and a frequently used promoter, on the structure and reactivity of Co and Co2C. We show that trace Na impurities significantly decrease catalyst activity of supported metallic Co, and that high Na concentrations result in Co2C formation and a loss in Fischer‐Tropsch activity. However, in Co2C catalysts, Na plays an important role in stabilizing the Co2C phase, but excess Na decreases catalyst activity. We use in situ X‐ray absorption spectroscopy to study Co2C formation and decomposition in the Na‐free catalyst under carburization and reaction conditions. The work reveals the importance of carefully controlling alkali metal content, particularly at trace levels, in catalyst design.

     
    more » « less
  5. Abstract

    Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.

     
    more » « less