Cyanuric acid (CA), a triazine heterocycle, is extensively utilized for noncovalent self‐assembly. The association between poly(adenine) and CA into micron‐length fibers was a remarkable observation made by Sleiman and co‐workers, who proposed that adenine and CA adopt a hexameric rosette configuration in analogy with previously reported structures for CA assemblies. However, recent experimental observations from the Krishnamurthy group led to a reevaluation of the hexameric rosette model, wherein they have proposed a hydrogen‐bonded helicene model as an alternative. Our molecular dynamics simulations show that the hexad model is indeed unlikely and that this novel noncovalent helicene geometry, where the adenine and CA bases form an extended helical hydrogen‐bond network across the system, is a more probable structural motif. The existence of noncovalent helicene compounds may have wide‐ranging applications in DNA nanotechnology and helicene chemistry.
The cyanuric acid (CA) heterocycle forms supramolecular structures with adenine nucleobases/nucleosides and oligonucleotides, leading to speculation that they can act as forerunners to RNA. Herein, the assembly behavior of RNA containing CA and CA–ribose nucleoside was studied. Contrary to previous reports, CA in RNA and the CA‐ribonucleoside resulted in destabilization of supramolecular assemblies, which led to a reevaluation of the CA–adenine hexameric rosette structure. An unprecedented noncovalent supramolecular helicene structure is proposed to account for the striking difference in behavior, which has implications for novel paradigms for reorganizing the structures of nucleic acids, the synthesis of long helicenes, and pre‐RNA world paradigms. The results caution against extrapolating the self‐assembly behavior of individual heterocycles from the level of monomers to oligomers because the base‐paring properties of (non‐)canonical nucleobases are impacted by the type of oligomeric backbone to which they are attached.
more » « less- PAR ID:
- 10256760
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 27
- Issue:
- 12
- ISSN:
- 0947-6539
- Page Range / eLocation ID:
- p. 4033-4042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Abstract The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.more » « less
-
Abstract Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases (
I ) were designed for binding A–U base pairs in double‐stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A–U using theo scaffold in PNA. PNAs having four sequentialIo extended nucleobases maintained high binding affinity.Io -
Abstract Through thiol‐ene photopolymerization of presynthesized oligomers, advanced clickable nucleic acids (CNA‐2G) are synthesized with sequence‐controlled repeating units. As examples, poly(thymine‐adenine) (polyTA) CNA‐2G and poly(thymine‐thymine‐cytosine) CNA‐2G are synthesized by polymerizing thiol‐ene heterofunctional dimers with pendant thymine‐adenine nucleobases and trimer with pendant thymine‐thymine‐cytosine nucleobases. Based on size exclusion chromatography (SEC) analysis, polyTA and polyTTC have number average molecular weights of 2000 and 1800, respectively, which contain 7–8 pendant nucleobases. Based on the different behavior of the CNA‐2G monomers and CNA‐2G oligomers with two or more pendant nucleobases in photopolymerization, an unusual thiol‐ene chain‐growth propagation mechanism is observed for the former and a common thiol‐ene step‐growth propagation mechanism for the latter. The uncommon thiol‐ene chain‐growth propagation is hypothesized to rely on a six‐membered ring mediated intramolecular hydrogen atom transfer process.
-
Cyanuric acid is a triazine derivative that has been identified from reactions performed under prebiotic conditions and has been proposed as a prospective precursor of ancestral RNA. For cyanuric acid to have played a key role during the prebiotic era, it would have needed to survive the harsh electromagnetic radiation conditions reaching the Earth’s surface during prebiotic times (≥200 nm). Therefore, the photostability of cyanuric acid would have been crucial for its accumulation during the prebiotic era. To evaluate the putative photostability of cyanuric acid in water, in this contribution, we employed density functional theory (DFT) and its time-dependent variant (TD-DFT) including implicit and explicit solvent effects. The calculations predict that cyanuric acid has an absorption maximum at ca. 160 nm (7.73 eV), with the lowest-energy absorption band extending to ca. 200 nm in an aqueous solution and exhibiting negligible absorption at longer wavelengths. Excitation of cyanuric acid at 160 nm or longer wavelengths leads to the population of S5,6 singlet states, which have ππ* character and large oscillator strengths (0.8). The population reaching the S5,6 states is expected to internally convert to the S1,2 states in an ultrafast time scale. The S1,2 states, which have nπ* character, are predicted to access a conical intersection with the ground state in a nearly barrierless fashion (ca. ≤ 0.13 eV), thus efficiently returning the population to the ground state. Furthermore, based on calculated spin–orbit coupling elements of ca. 6 to 8 cm−1, the calculations predict that intersystem crossing to the triplet manifold should play a minor role in the electronic relaxation of cyanuric acid. We have also calculated the vertical ionization energy of cyanuric acid at 8.2 eV, which predicts that direct one-photon ionization of cyanuric acid should occur at ca. 150 nm. Collectively, the quantum-chemical calculations predict that cyanuric acid would have been highly photostable under the solar radiation conditions reaching the Earth’s surface during the prebiotic era in an aqueous solution. Of relevance to the chemical origin of life and RNA-first theories, these observations lend support to the idea that cyanuric acid could have accumulated in large quantities during the prebiotic era and thus strengthens its candidature as a relevant prebiotic nucleobase.more » « less