skip to main content


Title: Understanding the Link between Computer Science Instruction and Reading & Math Performance
Worldwide, national initiatives have led to many school districts implementing computing curricula at the primary level. At that age, students are learning the foundational skills of reading and math. It is important to understand how computing can influence the development of these skills. While some argue that learning computing sharpens problem-solving skills that are applicable to other subjects, evidence supporting this belief is thin. In a quasi-experimental study of fourth-grade (ages 9-10) students, we compared state reading and math test scores of students receiving computing instruction with students who did not. Our findings demonstrated that a more open-ended, less scaffolded form of computing instruction was linked to performance gains in math, but not in reading (๐น (2, 232) = 11.08, ๐‘ < .01, ๐œ‚๐‘2 = .0625). When looking at students who face academic challenges that can impact reading and math, the same trend applied to students with economic disadvantages and students with limited English proficiency, but not for students with disabilities. These results suggest that moderately scaffolded computing instruction supports the development of skills applicable to math, a step towards better understanding the relationship between learning opportunities in computing and outcomes in other subjects.  more » « less
Award ID(s):
1660871 1760055
NSF-PAR ID:
10256866
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 52nd ACM Technical Symposium on Computer Science Education (SIGCSE โ€™21)
Page Range / eLocation ID:
408 to 414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As many school districts nationwide continue to incorporate Computer Science (CS) and Computational Thinking (CT) instruction at the K-8 level, it is crucial that we understand the factors and skills, such as reading and math proficiency, that contribute to the success of younger learners in a computing curriculum and are typically developed at this age. Yet, little is known about the relationship between reading and math proficiency, and the learning of key CS concepts at the elementary level. This study focused on 4th-grade students (ages 9-10) who were taught events, sequence, and repetition through an adaptation of the Creative Computing Curriculum. While all students benefited from access to such a curriculum, there were statistically-significant differences in learning outcomes, especially between students whose reading and math proficiency are below grade-level, and students whose proficiency are at or above grade-level. This performance gap suggests the need for curricular improvement and learning strategies that are CS specific for students who struggle with reading and math. 
    more » « less
  2. Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) "Introduction to Quantum Computing for Everyone." This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden. 
    more » « less
  3. The Exploring Computer Science (ECS) curriculum provides foundational knowledge of Computer Science (CS) to high school students as a stand-alone course. ECS began in the Los Angeles Unified School District in the late 2000s where it gained eminence for broadening participation in computing (BPC), with Latinx students representing over 70% of enrollment. This experience report describes a partnership that consists of three Universities, dozens of school districts, the ECS team, and other stakeholders to bring the ECS curriculum in mainly rural school districts in Alabama that have a majority African-American student population. Sixty in-service teachers (one teacher per school) have received professional learning opportunities to gain knowledge and skills to teach ECS. Signs of early broader impacts are emerging: 78% of our ECS enrollment are underrepresented minority (URM) students with nearly half of the cohort consisting of female students. Students reported they were engaged in working collaboratively and sharing responsibilities with others. Furthermore, students who reported being more involved in the ECS course had deeper confidence in their ability to succeed in CS, reported greater overall outcomes, had more confidence in development of 21st century skills, found the course more relevant, were more motivated to persist in CS, and exhibited increased interest in CS careers. We provide a comprehensive description of the partnershipโ€™s accomplishments and the evaluation findings on student CS experiences and on teacher self-efficacy in ECS preparation and instruction. Our findings contribute to the BPC literature, specifically for schools with predominantly African-American enrollment in rural communities. 
    more » « less
  4. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on studentsโ€™ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less
  5. null (Ed.)
    With the growth of Computer Science (CS) and Computational Thinking (CT) instruction in the primary/elementary domain, it is important that such instruction supports diverse learners. Four categories of students ล› students in poverty, multi-lingual students, students with disabilities, and students who have below-grade-level proficiency in reading and math, may face academic challenges that can hinder their learning in CS/CT curricula. However, little is known about how to support these students in CS/CT instruction, especially at this young age. TIPP&SEE, a meta-cognitive strategy that scaffolds learning by proceduralizing engagement through example code, may offer some support. A quasi-experimental study revealed that the gaps between students with and without academic challenges narrowed when using the TIPP&SEE strategy, indicating its promise in providing equitable learning opportunities in CS/CT. 
    more » « less