Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage.
Due to the high capacity of the three‐electron redox mechanism, Al‐ions‐based energy‐storage devices have the potential to provide a viable solution to meet the growing demand for powering electronic products. However, discovering suitable electrode materials for reversible insertion of Al ions remains a difficult task. Herein, it is reported that a classical conductive polymeric material poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) can perform the reversible Al‐ions intercalation for aqueous electrochemical capacitors. The as‐prepared PEDOT:PSS film on a carbon cloth composite electrode exhibits a large magnitude of faradaic currents and sharp redox peaks in cyclic voltammetry (CV) curves in aluminum sulfate electrolyte, and delivers a high capacitance of 269 F g−1(78 mAh g−1). Diffusion‐controlled Al‐ions intercalation/deintercalation as the charge‐storage mechanism is demonstrated here, which is not observed in other ions‐based electrolytes (H+, Mg2+, Li+, Na+). An asymmetric electrochemical capacitor based on Al ions, composed of such an electrode and activated carbon electrode is assembled and displays a high energy density of 41.6 Wh kg−1at a power density of 0.24 kW kg−1, demonstrating a promising aqueous electrochemical capacitor with an advanced energy density via polyvalent ions intercalation.
- PAR ID:
- 10256955
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Energy Technology
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2194-4288
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The realization of biomass‐derived supercapacitors of high performance is of practical importance for the manufacturing of supercapacitors from green and renewable sources. Herein, the feasibility of constructing high‐performance supercapacitors from potato‐derived activated carbon (AC) is demonstrated. The potato‐derived AC is produced from potato mash through hydrothermal treatment and high‐temperature activation with KOH as agent. The supercapacitors with aqueous electrolyte of 6
m KOH and a mass loading of 5 mg per electrode achieve a specific gravimetric capacitance of 333.7 F g−1per electrode and a specific energy of 11.75 W h g−1at a specific power of 197.6 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. The supercapacitors with a mass loading of 10 mg per electrode achieve the maximum specific gravimetric capacitance of 340.6 F g−1and a specific energy of 11.75 W h g−1at a specific power of 194.2 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. Increasing the compaction of electrode materials under compressive stress has the potential to increase the electrochemical performance of supercapacitors. -
Abstract Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor−acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg−1at a 1 A g−1discharge rate, a power density of 14.4 kW kg−1at a 10 A g−1discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies.
-
Abstract A three‐dimensional porous MnOOH hierarchical nanostructure grown on flexible carbon fiber fabric is successfully synthesized by a facile hydrothermal method. Monoclinic MnOOH has a crystalline structure layered in the [010] direction. The layered structure facilitates intercalation/deintercalation of Li+into the interlayer space as well as the adsorption/desorption of Li+onto the surface of each layer during fast charging/discharging process. This porous hierarchical structure provides many electroactive sites and efficient paths for ion transport. When used as flexible and lightweight electrodes for supercapacitors, the porous MnOOH electrode manifests good electrochemical performance with a high capacitance of 160 F g−1at a current density of 0.2 mA cm−2, a high energy density of 14 Wh kg−1at a power density of 162 W kg−1, and great cycling stability. Moreover, the application for the low‐cost and highly flexible supercapacitors in powering light‐emitting diodes (LEDs) highlights its enormous commercial potential in next‐generation energy storage systems.
-
Abstract The growing demand for bioelectronics has generated widespread interest in implantable energy storage. These implantable bioelectronic devices, powered by a complementary battery/capacitor system, have faced difficulty in miniaturization without compromising their functionality. This paper reports on the development of a promising high‐rate cathode material for implantable power sources based on Li‐exchanged Na1.5VOPO4F0.5anchored on reduced graphene oxide (LNVOPF‐rGO). LNVOPF is unique in that it offers dual charge storage mechanisms, which enable it to exhibit mixed battery/capacitor electrochemical behavior. In this work, electrochemical Li‐ion exchange of the LNVOPF structure is characterized by operando X‐ray diffraction. Through designed nanostructuring, the charge storage kinetics of LNVOPF are improved, as reflected in the stored capacity of 107 mAh g−1at 20C. A practical full cell device composed of LNVOPF and T‐Nb2O5, which serves as a pseudocapacitive anode, is fabricated to demonstrate not only high energy/power density storage (100 Wh kg−1at 4000 W kg−1) but also reliable pulse capability and biocompatibility, a desirable combination for applications in biostimulating devices. This work underscores the potential of miniaturizing biomedical devices by replacing a conventional battery/capacitor couple with a single power source.