skip to main content


Title: Reversible Intercalation of Al‐Ions in Poly(3,4‐Ethylenedioxythiophene):Poly(4‐Styrenesulfonate) Electrode for Aqueous Electrochemical Capacitors with High Energy Density
  more » « less
NSF-PAR ID:
10256955
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Technology
Volume:
9
Issue:
4
ISSN:
2194-4288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VOxelectrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOxelectrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOxsymmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOxSSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithRct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOxSSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.

     
    more » « less
  4. Abstract

    A three‐dimensional porous MnOOH hierarchical nanostructure grown on flexible carbon fiber fabric is successfully synthesized by a facile hydrothermal method. Monoclinic MnOOH has a crystalline structure layered in the [010] direction. The layered structure facilitates intercalation/deintercalation of Li+into the interlayer space as well as the adsorption/desorption of Li+onto the surface of each layer during fast charging/discharging process. This porous hierarchical structure provides many electroactive sites and efficient paths for ion transport. When used as flexible and lightweight electrodes for supercapacitors, the porous MnOOH electrode manifests good electrochemical performance with a high capacitance of 160 F g−1at a current density of 0.2 mA cm−2, a high energy density of 14 Wh kg−1at a power density of 162 W kg−1, and great cycling stability. Moreover, the application for the low‐cost and highly flexible supercapacitors in powering light‐emitting diodes (LEDs) highlights its enormous commercial potential in next‐generation energy storage systems.

     
    more » « less
  5. Abstract

    Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.

     
    more » « less