Abstract The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.
more »
« less
Human Infection Challenge Studies: a Test for the Social Value Criterion of Research Ethics
ABSTRACT Human infection challenge studies involving the intentional infection of research participants with a disease-causing agent have recently been suggested as a means to speed up the search for a vaccine for the ongoing coronavirus disease 2019 (COVID-19) outbreak. Calls for challenge studies, however, rely on the expected social value of these studies. This value represents more than the simple possibility that a successful study will lead to the rapid development and dissemination of vaccines but also some expectation that this will actually occur. I show how this expectation may not be realistic in the current political moment and offer potential ways to make sure that any challenge trials that arise actually achieve their goals.
more »
« less
- Award ID(s):
- 1734521
- PAR ID:
- 10257294
- Editor(s):
- Imperiale, Michael J.
- Date Published:
- Journal Name:
- mSphere
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2379-5042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Studies of infectious disease ecology would benefit greatly from knowing when individuals were infected, but estimating this time of infection can be challenging, especially in wildlife. Time of infection can be estimated from various types of data, with antibody‐level data being one of the most promising sources of information. The use of antibody levels to back‐calculate infection time requires the development of a host‐pathogen system‐specific model of antibody dynamics, and a leading challenge in such quantitative serology approaches is how to model antibody dynamics in the absence of experimental infection data.We present a way to model antibody dynamics in a Bayesian framework that facilitates the incorporation of all available information about potential infection times and apply the model to estimate infection times of Channel Island foxes infected withLeptospira interrogans.Using simulated data, we show that the approach works well across a broad range of parameter settings and can lead to major improvements in infection time estimates that depend on system characteristics such as antibody decay rate and variation in peak antibody levels after exposure. When applied to field data we saw reductions up to 83% in the window of possible infection times.The method substantially simplifies the challenge of modelling antibody dynamics in the absence of individuals with known infection times, opens up new opportunities in wildlife disease ecology and can even be applied to cross‐sectional data once the model is trained.more » « less
-
The strategy of relying solely on current SARS-CoV-2 vaccines to halt SARS-CoV-2 transmission has proven infeasible. In response, many public-health authorities have advocated for using vaccines to limit mortality while permitting unchecked SARS-CoV-2 spread (“learning to live with the disease”). The feasibility of this strategy critically depends on the infection fatality rate (IFR) of SARS-CoV-2. An expectation exists that the IFR will decrease due to selection against virulence. In this work, we perform a viral fitness estimation to examine the basis for this expectation. Our findings suggest large increases in virulence for SARS-CoV-2 would result in minimal loss of transmissibility, implying that the IFR may vary freely under neutral evolutionary drift. We use an SEIRS model framework to examine the effect of hypothetical changes in the IFR on steady-state death tolls under COVID-19 endemicity. Our modeling suggests that endemic SARS-CoV-2 implies vast transmission resulting in yearly US COVID-19 death tolls numbering in the hundreds of thousands under many plausible scenarios, with even modest increases in the IFR leading to unsustainable mortality burdens. Our findings highlight the importance of enacting a concerted strategy and continued development of biomedical interventions to suppress SARS-CoV-2 transmission and slow its evolution.more » « less
-
Nontuberculous mycobacteria are ubiquitous environmental bacteria that frequently cause disease in persons with cystic fibrosis (pwCF). The risks for NTM infection vary geographically. Detection of high-risk areas is important for focusing prevention efforts. In this study, we apply five cluster detection methods to identify counties with high NTM infection risk. Four clusters were detected by at least three of the five methods, including twenty-five counties in five states. The geographic area and number of counties in each cluster depended upon the detection method used. Identifying these clusters supports future studies of environmental predictors of infection and will inform control and prevention efforts.more » « less
-
Raina, Jean-Baptiste (Ed.)ABSTRACT Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host–pathogen–microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina , is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae . We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass ( Zostera marina ) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers.more » « less
An official website of the United States government

