skip to main content


Title: Parasite intensity and the evolution of migratory behavior
Abstract

Migration can allow individuals to escape parasite infection, which can lead to a lower infection probability (prevalence) in a population and/or fewer parasites per individual (intensity). Because individuals with more parasites often have lower survival and/or fecundity, infection intensity shapes the life‐history trade‐offs determining when migration is favored as a strategy to escape infection. Yet, most theory relies on susceptible‐infected (SI) modeling frameworks, defining individuals as either healthy or infected, ignoring details of infection intensity. Here, we develop a novel modeling approach that captures infection intensity as a spectrum, and ask under what conditions migration evolves as function of how infection intensity changes over time. We show that relative timescales of migration and infection accumulation determine when migration is favored. We also find that population‐level heterogeneity in infection intensity can lead to partial migration, where less‐infected individuals migrate while more infected individuals remain resident. Our model is one of the first to consider how infection intensity can lead to migration. Our results frame migratory escape in light of infection intensity rather than prevalence, thus demonstrating that decreased infection intensity should be considered a benefit of migration, alongside other typical drivers of migration.

 
more » « less
Award ID(s):
1654609
NSF-PAR ID:
10257929
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
102
Issue:
2
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous theoretical models have demonstrated that migration, a seasonal animal movement behaviour, can minimize the risks and costs of parasite infection. Past work on migration–infection interactions assumes migration is the only strategy available to organisms for dealing with the parasite infection, that is they migrate to a different environment to recover or escape from infection. Thus, migration is similar to the non‐spatial strategy of resistance, where hosts prevent infection or kill parasites once infected. However, an alternative defence strategy is to tolerate the infection and experience a lower cost to the infection. To our knowledge, no studies have examined how migration can change based on combining two host strategies (migration and tolerance) for dealing with parasites.

    In this paper, we aim to understand how both parasite transmission and infection tolerance can influence the host's migratory behaviour.

    We constructed a model that incorporates two host strategies (migration and tolerance) to understand whether allowing for tolerance affects the proportion of the population that migrates at equilibrium in response to infection.

    We show that the benefits of tolerance can either decrease or increase the host's migration. Also, if the benefit of migration is great, then individuals are more likely to migrate regardless of the presence of tolerance. Finally, we find that the transmission rate of parasite infection can either decrease or increase the tolerant host's migration, depending on the cost of migration.

    These findings highlight that adopting two defence strategies is not always beneficial to the hosts. Instead, a single strategy is often better, depending on the costs and benefits of the strategies and infection pressures. Our work further suggests that multiple host‐defence strategies as a potential explanation for the evolution of migration to minimize the parasite infection. Moreover, migration can also affect the ecological and evolutionary dynamics of parasite–host interactions.

     
    more » « less
  2. Abstract

    Pathogen and parasite infections are increasingly recognized as powerful drivers of animal movement, including migration. Yet, infection‐related migration benefits can result from a combination of environmental and/or social conditions, which can be difficult to disentangle.

    Here, we focus on two infection‐related mechanisms that can favour migration: moving to escape versus recover from infection. By directly comparing the evolution of migration in response to each mechanism, we can evaluate the likely importance of changing abiotic conditions (linked to migratory recovery) with changing social conditions (linked to migratory escape) in terms of infection‐driven migration.

    We built a mathematical model and analysed it using numerically simulated adaptive dynamics to determine when migration should evolve for each migratory recovery and social migratory escape.

    We found that a higher fraction of the population migrated under migratory recovery than under social migratory escape. We also found that two distinct migratory strategies (e.g. some individuals always migrate and others only occasionally migrate) sometimes coexisted within populations with social migratory escape, but never with migratory recovery.

    Our results suggest that migratory recovery is more likely to promote the evolution of migratory behaviour, rather than escape from infected conspecifics (social migratory escape).

     
    more » « less
  3. The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen’s negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture–mark–recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fish in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.

     
    more » « less
  4. Abstract

    There is a clear need to understand the effect of human intervention on the evolution of infectious disease. In particular, culling and harvesting of both wildlife and managed livestock populations are carried out in a wide range of management practices, and they have the potential to impact the evolution of a broad range of disease characteristics. Applying eco‐evolutionary theory we show that once culling/harvesting becomes targeted on specific disease classes, the established result that culling selects for higher virulence is only found when sufficient infected individuals are culled. If susceptible or recovered individuals are targeted, selection for lower virulence can occur. An important implication of this result is that when culling to eradicate an infectious disease from a population, while it is optimal to target infected individuals, the consequent evolution can increase the basic reproductive ratio of the infection, , and make parasite eradication more difficult. We show that increases in evolved virulence due to the culling of infected individuals can lead to excess population decline when sustainably harvesting a population. In contrast, culling susceptible or recovered individuals can select for decreased virulence and a reduction in population decline through culling. The implications to the evolution of virulence are typically the same in wildlife populations, that are regulated by the parasite, and livestock populations, that have a constant population size where restocking balances the losses due to mortality. However, the well‐known result that vertical transmission selects for lower virulence and transmission in wildlife populations is less marked in livestock populations for parasites that convey long‐term immunity since restocking can enhance the density of the immune class. Our work emphasizes the importance of understanding the evolutionary consequences of intervention strategies and the different ecological feedbacks that can occur in wildlife and livestock populations.

     
    more » « less
  5. Abstract

    Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.

    Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.

    Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.

    Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.

    Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.

     
    more » « less