- Award ID(s):
- 1900359
- PAR ID:
- 10258438
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 32
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 8546 to 8557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
For over a decade there has been some significant excitement and speculation that quantum effects may be important in the excitation energy transport process in the light harvesting complexes of certain bacteria and algae, in particular via the Fenna–Matthews–Olsen (FMO) complex. Whilst the excitement may have waned somewhat with the realisation that the observed long-lived oscillations in two-dimensional electronic spectra of FMO are probably due to vibronic coherences, it remains a question whether these coherences may play any important role. We review our recent work showing how important the site-to-site variation in coupling between chloroplasts in FMO and their protein scaffold environment is for energy transport in FMO and investigate the role of vibronic modes in this transport. Whilst the effects of vibronic excitations seem modest for FMO, we show that for bilin-based pigment–protein complexes of marine algae, in particular PC645, the site-dependent vibronic excitations seem essential for robust excitation energy transport, which may again open the door for important quantum effects to be important in these photosynthetic complexes.more » « less
-
Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. DNA is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations—transverse dimer, adjacent dimer, and tetramer—were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes were obtained by simultaneous fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of dye mutual orientation in the aggregates enabled close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next generation systems driven by molecular excitons.more » « less
-
Quantum coherences, observed as time-dependent beats in ultrafast spectroscopic experiments, arise when light–matter interactions prepare systems in superpositions of states with differing energy and fixed phase across the ensemble. Such coherences have been observed in photosynthetic systems following ultrafast laser excitation, but what these coherences imply about the underlying energy transfer dynamics remains subject to debate. Recent work showed that redox conditions tune vibronic coupling in the Fenna–Matthews–Olson (FMO) pigment–protein complex in green sulfur bacteria, raising the question of whether redox conditions may also affect the long-lived (>100 fs) quantum coherences observed in this complex. In this work, we perform ultrafast two-dimensional electronic spectroscopy measurements on the FMO complex under both oxidizing and reducing conditions. We observe that many excited-state coherences are exclusively present in reducing conditions and are absent or attenuated in oxidizing conditions. Reducing conditions mimic the natural conditions of the complex more closely. Further, the presence of these coherences correlates with the vibronic coupling that produces faster, more efficient energy transfer through the complex under reducing conditions. The growth of coherences across the waiting time and the number of beating frequencies across hundreds of wavenumbers in the power spectra suggest that the beats are excited-state coherences with a mostly vibrational character whose phase relationship is maintained through the energy transfer process. Our results suggest that excitonic energy transfer proceeds through a coherent mechanism in this complex and that the coherences may provide a tool to disentangle coherent relaxation from energy transfer driven by stochastic environmental fluctuations.more » « less
-
Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna–Matthews–Olson (FMO) pigment–protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4–1 and 4–2-1 pathways because the exciton 4–1 energy gap is vibronically coupled with a bacteriochlorophyll-
a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4–1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4–2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment–protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer. -
An attractive strategy to improve the energy transfer properties of synthetic dye networks is to optimize the excitonic coupling between the dyes to increase energy transfer rates. To explore this possibility, we investigate the use of J-like cyanine dye dimers (Cy3 and Cy5 dimers) on DNA duplexes as energy transfer relays in molecular photonic wires. This approach is based on using the collective emission dipole of a J-dimer to enhance the FRET rate between the dimer relay and a remote acceptor dye. Experimentally, we find that in room temperature aqueous buffer conditions the dimer relay provided no benefit in energy transfer quantum yield relative to a simple monomer relay. Further investigation led us to determine that enhanced non-radiative relaxation, non-ideal dye orientation within the dimer, and unfavorable dye orientation between the dimer and the acceptor dye limit energy transfer through the dimer relay. We hypothesized that non-radiative relaxation was the largest factor, and demonstrated this by placing the sample in a viscous solvent or cooling the sample, which dramatically improved energy transfer through the J-like dimer relay. Similar to how the formation of DNA-templated J-like dimers has improved, the practical use of J-like dimers to optimize energy transfer quantum efficiency will require improvements in the ability to control orientation between dyes to reach its full potential.more » « less