skip to main content

Title: Grain Boundary Defect Passivation in Quadruple Cation Wide‐Bandgap Perovskite Solar Cells
  more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Solar RRL
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grain boundaries (GBs) in perovskite solar cells and optoelectronic devices are widely regarded as detrimental defects that accelerate charge and energy losses through nonradiative carrier trapping and recombination, but the mechanism is still under debate owing to the diversity of GB configurations and behaviors. We combine ab initio electronic structure and machine learning force field to investigate evolution of the geometric and electronic structure of a CsPbBr 3 GB on a nanosecond timescale, which is comparable with the carrier recombination time. We demonstrate that the GB slides spontaneously within a few picoseconds increasing the band gap. Subsequent structural oscillations dynamically produce midgap trap states through Pb–Pb interactions across the GB. After several hundred picoseconds, structural distortions start to occur, increasing the occurrence of deep midgap states. We identify a distinct correlation of the average Pb–Pb distance and fluctuations in the ion coordination numbers with the appearance of the midgap states. Suppressing GB distortions through annealing and breaking up Pb–Pb dimers by passivation can efficiently alleviate the detrimental effects of GBs in perovskites. The study provides new insights into passivation of the detrimental GB defects, and demonstrates that structural and charge carrier dynamics in perovskites are intimately coupled. 
    more » « less
  2. Understanding carrier recombination processes in metal halide perovskites is fundamentally important to further improving the efficiency of perovskite solar cells, yet the accurate recombination velocity at grain boundaries (GBs) has not been determined. Here, we report the determination of carrier recombination velocities at GBs (SGB) of polycrystalline perovskites by mapping the transient photoluminescence pattern change induced by the nonradiative recombination of carriers at GBs. Charge recombination at GBs is revealed to be even stronger than at surfaces of unpassivated films, with averageSGBreaching 2200 to 3300 cm/s. Regular surface treatments do not passivate GBs because of the absence of contact at GBs. We find a surface treatment using tributyl(methyl)phosphonium dimethyl phosphate that can penetrate into GBs by partially dissolving GBs and converting it into one-dimensional perovskites. It reduces the averageSGBby four times, with the lowestSGBof 410 cm/s, which is comparable to surface recombination velocities after passivation.

    more » « less
  3. Abstract

    Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices.

    more » « less
  4. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less
  5. Abstract

    In recent years, hybrid perovskite solar cells (HPSCs) have received considerable research attention due to their impressive photovoltaic performance and low‐temperature solution processing capability. However, there remain challenges related to defect passivation and enhancing the charge carrier dynamics of the perovskites, to further increase the power conversion efficiency of HPSCs. In this work, the use of a novel material, phenylhydrazinium iodide (PHAI), as an additive in MAPbI3perovskite for defect minimization and enhancement of the charge carrier dynamics of inverted HPSCs is reported. Incorporation of the PHAI in perovskite precursor solution facilitates controlled crystallization, higher carrier lifetime, as well as less recombination. In addition, PHAI additive treated HPSCs exhibit lower density of filled trap states (1010cm−2) in perovskite grain boundaries, higher charge carrier mobility (≈11 × 10−4cm2V−1s), and enhanced power conversion efficiency (≈18%) that corresponds to a ≈20% improvement in comparison to the pristine devices.

    more » « less