skip to main content


Title: High‐Efficiency Quasi‐2D Perovskite Solar Cells Incorporating 2,2′‐Biimidazolium Cation
  more » « less
NSF-PAR ID:
10259683
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Solar RRL
Volume:
5
Issue:
3
ISSN:
2367-198X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The recent development of quasi‐2D perovskite solar cells have drawn significant attention due to the improved stability of these materials and devices against moisture compared to their 3D counterparts. However, the optoelectronic properties of 2D perovskites need to be optimized in order to achieve high efficiency. In this work, the effect of spacer cations, i.e., phenethylammonium (PEA), 4‐fluorophenethylammonium (F‐PEA), and 4‐methoxyphenethylammonium (MeO‐PEA) on the optoelectronic properties and device performance of quasi‐2D perovskites is systematically studied. It is observed that both larger and more hydrophobic cations can improve perovskite stability against moisture, while larger size can adversely influence the device performance. Interestingly, with F‐PEA or MeO‐PEA, distribution ofnvalue can be shifted toward high 3D content in quasi‐2D perovskite layers, which enables lower bandgaps and possibly lower exciton binding energy. Due to the best charge transport and lowest bandgap, the F‐PEAI‐based quasi‐2D perovskite (n= 5) solar cell shows a highest power conversion efficiency (PCE) of 14.5% with excellent stability in air with a humidity of 40–50%, keeping 90% of the original PCE after 40 d. It is believed that the approach may open a way for the design of new organic spacer cations for stable low‐dimensional hybrid perovskites with high performance.

     
    more » « less
  2. Abstract

    Perovskite light‐emitting diodes (PeLEDs) have received great attention for their potential as next‐generation display technology. While remarkable progress has been achieved in green, red, and near‐infrared PeLEDs with external quantum efficiencies (EQEs) exceeding 20%, obtaining high performance blue PeLEDs remains a challenge. Poor charge balance due to large charge injection barriers in blue PeLEDs has been identified as one of the major roadblocks to achieve high efficiency. Here band edge control of perovskite emitting layers for blue PeLEDs with enhanced charge balance and device performance is reported. By using organic spacer cations with different dipole moments, that is, phenethyl ammonium (PEA), methoxy phenethyl ammonium (MePEA), and 4‐fluoro phenethyl ammonium (4FPEA), the band edges of quasi‐2D perovskites are tuned without affecting their band gaps. Detailed characterization and computational studies have confirmed the effect of dipole moment modification to be mostly electrostatic, resulting in changes in the ionization energies of ≈0.45 eV for MePEA and ≈ −0.65 eV for 4FPEA based thin films relative to PEA‐based thin films. With improved charge balance, blue PeLEDs based on MePEA quasi‐2D perovskites show twofold increase of the EQE as compared to the control PEA based devices.

     
    more » « less
  3. Abstract

    2D perovskites are recently attracting a significant amount of attention, mainly due to their improved stability compared with their 3D counterpart, e.g., the archetypical MAPbI3. Interestingly, the first studies on 2D perovskites can be dated back to the 1980s. The most popular 2D perovskites have a general formula of (RNH3)2MAn−1MnX3n+1, wherenrepresents the number of metal halide octahedrons between the insulating organic cation layers. The optoelectronic properties of 2D perovskites, e.g., band gap, are highly dependent on the thickness of the inorganic layers (i.e., the value ofn). Herein, 2D perovskites are arbitrarily divided into three classes, strict 2D (n= 1), quasi‐2D (n= 2–5), and quasi‐3D (n> 5), and research progress is summarized following this classification. The majority of existing 2D perovskites only employ very simple organic cations (e.g., butyl ammonium or phenylethyl ammonium), which merely function as the supporting layer/insulating barrier to achieve the 2D structure. Thus, a particularly important research question is: can functional organic cations be designed for these 2D perovskites, where these functional organic cations would play an important role in dictating the optoelectronic properties of these organic–inorganic hybrid materials, leading to unique device performance or applications?

     
    more » « less
  4. Abstract

    Dion–Jacobson (DJ) phase 2D layered perovskites with diammonium organic cations demonstrate improved stability over 3D perovskites under thermal/photo/moisture stresses. However, the power conversion efficiency (PCE) of DJ phase perovskite solar cells (PVSCs) is often limited by the poor charge transport across the perovskite layers due to the crystal growth direction that tends to be parallel to the substrate. Here, a simple and effective method is demonstrated by employing a NH4SCN additive to facilitate the orientation of perovskite crystal growth to be perpendicular to the substrate. Also, the layer number distribution can be narrowed to aroundn= 3 andn= 4 with NH4SCN addition. The device derived from the quasi‐2D DJ (BDA)(MA)4Pb5I16perovskite film processed with NH4SCN shows a PCE of 14.53%, which is among the highest values reported for 2D PVSCs prepared at room temperature. Moreover, the device retains 85% of its initial PCE after 900 h storage in ambient conditions with a humidity level of 50 ± 5%. These results demonstrate that this attractive approach will enable highly efficient and stable PVSCs to be made for renewable energy applications.

     
    more » « less
  5. Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs. 
    more » « less