skip to main content


Title: Large Damping Enhancement in Dirac‐Semimetal–Ferromagnetic‐Metal Layered Structures Caused by Topological Surface States
Abstract

This article reports damping enhancement in a ferromagnetic NiFe thin film due to an adjacent α‐Sn thin film. Ferromagnetic resonance studies show that an α‐Sn film separated from a NiFe film by an ultrathin Ag spacer can cause an extra damping in the NiFe film that is three times bigger than the intrinsic damping of the NiFe film. Such an extra damping is absent in structures where the α‐Sn film interfaces directly with a NiFe film, or is replaced by a β‐Sn film. The data suggest that the extra damping is associated with topologically nontrivial surface states in the topological Dirac semimetal phase of the α‐Sn film. This work suggests that, like topological insulators, topological Dirac semimetal α‐Sn may have promising applications in spintronics.

 
more » « less
Award ID(s):
1915849 1710512 1641989
NSF-PAR ID:
10453385
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
11
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    α-Sn and SnGe alloys are attracting attention as a new family of topological quantum materials. However, bulkα-Sn is thermodynamically stable only below 13C. Moreover, scalable integration ofα-Sn quantum materials and devices on silicon is hindered by their large lattice mismatch. Here, we grow compressively strainedα-Sn doped with 2-4 at.% germanium on a native oxide layer on a silicon substrate at 300–500C. Growth is found to occur by a reversedβ-Sn toα-Sn phase transformation without relying on epitaxy, with germanium-rich GeSn nanoclusters in the as-deposited material acting as seeds. The size ofα-Sn microdots reaches up to 200 nm, which is approximately ten times larger than the upper size limit forα-Sn formation reported previously. Furthermore, the compressive strain makes it a candidate 3D topological Dirac semimetal with possible applications in spintronics. This process can be further optimized to achieve optically tunable SnGe quantum material and device integration on silicon.

     
    more » « less
  2. null (Ed.)
    Abstract

    Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threat to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices.

     
    more » « less
  3. Abstract

    The emergence of spin‐orbit torques as a promising approach to energy‐efficient magnetic switching has generated large interest in material systems with easily and fully tunable spin‐orbit torques. Here, current‐induced spin‐orbit torques in VO2/NiFe heterostructures are investigated using spin‐torque ferromagnetic resonance, where the VO2layer undergoes a prominent insulator‐metal transition. A roughly twofold increase in the Gilbert damping parameter, α, with temperature is attributed to the change in the VO2/NiFe interface spin absorption across the VO2phase transition. More remarkably, a large modulation (±100%) and a sign change of the current‐induced spin‐orbit torque across the VO2phase transition suggest two competing spin‐orbit torque generating mechanisms. The bulk spin Hall effect in metallic VO2, corroborated by the first‐principles calculation of the spin Hall conductivity , is verified as the main source of the spin‐orbit torque in the metallic phase. The self‐induced/anomalous torque in NiFe, with opposite sign and a similar magnitude to the bulk spin Hall effect in metallic VO2, can be the other competing mechanism that dominates as temperature decreases. For applications, the strong tunability of the torque strength and direction opens a new route to tailor spin‐orbit torques of materials that undergo phase transitions for new device functionalities.

     
    more » « less
  4. Topological Dirac semimetal α-Sn exhibits unexpectedly large bilinear magnetoelectric resistance at room temperature. 
    more » « less
  5. Colossal negative magnetoresistance is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. In contrast, topological semimetals show large but positive magnetoresistance, originated from the high-mobility charge carriers. Here, we show that in the highly electron-doped region, the Dirac semimetal CeSbTe demonstrates similar properties as the manganites. CeSb0.11Te1.90hosts multiple charge density wave modulation vectors and has a complex magnetic phase diagram. We confirm that this compound is an antiferromagnetic Dirac semimetal. Despite having a metallic Fermi surface, the electronic transport properties are semiconductor-like and deviate from known theoretical models. An external magnetic field induces a semiconductor metal–like transition, which results in a colossal negative magnetoresistance. Moreover, signatures of the coupling between the charge density wave and a spin modulation are observed in resistivity. This spin modulation also produces a giant anomalous Hall response.

     
    more » « less