skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.  more » « less
Award ID(s):
1661727
NSF-PAR ID:
10263901
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Cellular Neuroscience
Volume:
15
ISSN:
1662-5102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid activation of resident glia occurs after spinal cord injury. Somewhat later, innate and adaptive immune responses occur with the invasion of peripheral immune cells into the wound site. The activation of resident and peripheral immune cells has been postulated to play harmful as well as beneficial roles in the regenerative process. Mauthner cells, large identifiable neurons located in the hindbrain of most fish and amphibians, provided the opportunity to study the morphological relationship between reactive cells and Mauthner axons (M‐axons) severed by spinal cord crush or by selective axotomy. After crossing in the hindbrain, the M‐axons of adult goldfish,Carassius auratus, extend the length of the spinal cord. Following injury, the M‐axon undergoes retrograde degeneration within its myelin sheath creating an axon‐free zone (proximal dieback zone). Reactive cells invade the wound site, enter the axon‐free dieback zone and are observed in the vicinity of the retracted M‐axon tip as early as 3 hr postinjury. Transmission electron microscopy allowed the detection of microglia/macrophages and granulocytes, some of which appear to be neutrophil‐like, at each of these locations. We believe that this is the first report of the invasion of such cells within the myelin sheath of an identifiable axon in the vertebrate central nervous system (CNS). We speculate that microglia/macrophages and granulocytes that are attracted within a few hours to the damaged M‐axon are part of an inflammatory response that allows phagocytosis of debris and plays a role in the regenerative process. Our results provide the baseline from which to utilize immunohistochemical and genetic approaches to elucidate the role of non‐neuronal cells in the regenerative process of a single axon in the vertebrate CNS.

     
    more » « less
  2. Abstract

    Electrical stimulation of the cervical spinal cord is gaining traction as a therapy following spinal cord injury; however, it is difficult to target the cervical motor region in a rodent using a non-penetrating stimulus compared with direct placement of intraspinal wire electrodes. Penetrating wire electrodes have been explored in rodent and pig models and, while they have proven beneficial in the injured spinal cord, the negative aspects of spinal parenchymal penetration (e.g., gliosis, neural tissue damage, and obdurate inflammation) are of concern when considering therapeutic potential. We therefore designed a novel approach for epidural stimulation of the rat spinal cord using a wireless stimulation system and ventral electrode array. Our approach allowed for preservation of mobility following surgery and was suitable for long term stimulation strategies in awake, freely functioning animals. Further, electrophysiology mapping of the ventral spinal cord revealed the ventral approach was suitable to target muscle groups of the rat forelimb and, at a single electrode lead position, different stimulation protocols could be applied to achieve unique activation patterns of the muscles of the forelimb.

     
    more » « less
  3. Abstract

    Mass spectrometry‐based proteomics provides a robust and reliable method for detecting and quantifying changes in protein abundance among samples, including cells, tissues, organs, and supernatants. Physical damage or inflammation can compromise the ocular surface permitting colonization by bacterial pathogens, commonlyPseudomonas aeruginosa, and the formation of biofilms. The interplay betweenP. aeruginosaand the immune system at the site of infection defines the host's ability to defend against bacterial invasion and promote clearance of infection. Profiling of the ocular tissue following infection describes the nature of the host innate immune response and specifically the presence and abundance of neutrophil‐associated proteins to neutralize the bacterial biofilm. Moreover, detection of unique proteins produced byP. aeruginosaenable identification of the bacterial species and may serve as a diagnostic approach in a clinical setting. Given the emergence and prevalence of antimicrobial resistant bacterial strains, the ability to rapidly diagnose a bacterial infection promoting quick and accurate treatment will reduce selective pressure towards resistance. Furthermore, the ability to define differences in the host immune response towards bacterial invasion enhances our understanding of innate immune system regulation at the ocular surface. Here, we describe murine ocular infection and sample collection, as well as outline protocols for protein extraction and mass spectrometry profiling from corneal tissue and extracellular environment (eye wash) samples. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Murine model of ocular infection

    Basic Protocol 2: Murine model sample collection

    Basic Protocol 3: Protein extraction from eye wash

    Basic Protocol 4: Protein extraction from corneal tissue

    Basic Protocol 5: Mass spectrometry‐based proteomics and bioinformatics from eye wash and corneal tissue samples

     
    more » « less
  4. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in varied clinical outcomes, with virus-induced chronic inflammation and tissue injury being associated with enhanced disease pathogenesis. To determine the role of tissue damage on immune populations recruitment and function, a mathematical model of innate immunity following SARS-CoV-2 infection has been proposed. The model was fitted to published longitudinal immune marker data from patients with mild and severe COVID-19 disease and key parameters were estimated for each clinical outcome. Analytical, bifurcation, and numerical investigations were conducted to determine the effect of parameters and initial conditions on long-term dynamics. The results were used to suggest changes needed to achieve immune resolution. 
    more » « less
  5. Abstract

    The spinal cord of the teleost fishApteronotus leptorhynchuscontinues to grow during adulthood, in concert with the overall body growth. Immunohistological studies, combined with mathematical modeling, suggest that this growth is driven by proliferative activity of Sox2‐expressing stem/progenitor cells (SPCs) and by cell drift due to population pressure. The SPCs exhibit high volumetric density in the caudal filament and the ependymal layer. Nevertheless, the majority of these cells are found in the parenchyma throughout the rostro‐caudal axis of the spinal cord, albeit at much lower volumetric densities than in the ependymal layer. The SPCs give rise, via transit‐amplifying cells, to neurons and glia. The relative number of neurons and glia is primarily regulated through apoptosis of supernumerary neurons. Quantitative analysis has demonstrated that the continued cell proliferation results in additive neurogenesis. This addition includes adult‐born spinal electromotoneurons, thereby resulting in a continuous increase in the amplitude of the fish’s electric organ discharge during adult life. Amputation of the caudal part of the spinal cord induces initially a degenerative response, dominated by massive apoptotic cell death in spinal cord tissue immediately rostral to the injury site, and distinguished by a partial loss of the electric organ discharge amplitude. This phase is followed by a regenerative response, characterized by absence of gliosis and by rapid stem‐cell‐driven tissue regrowth. Although the quality of the regenerated tissue is variable among individuals, the structural repair has led in every fish examined thus far to full recovery of the electric organ discharge amplitude.

     
    more » « less