Embedding computation in biochemical environments incompatible with traditional electronics is expected to have a wide-ranging impact in synthetic biology, medicine, nanofabrication, and other fields. Natural biochemical systems are typically modeled by chemical reaction networks (CRNs) which can also be used as a specification language for synthetic chemical computation. In this paper, we identify a syntactically checkable class of CRNs called noncompetitive (NC) whose equilibria are absolutely robust to reaction rates and kinetic rate law, because their behavior is captured solely by their stoichiometric structure. In spite of the inherently parallel nature of chemistry, the robustness property allows for programming as if each reaction applies sequentially. We also present a technique to program NC-CRNs using well-founded deep learning methods, showing a translation procedure from rectified linear unit (ReLU) neural networks to NC-CRNs. In the case of binary weight ReLU networks, our translation procedure is surprisingly tight in the sense that a single bimolecular reaction corresponds to a single ReLU node and vice versa. This compactness argues that neural networks may be a fitting paradigm for programming rate-independent chemical computation. As proof of principle, we demonstrate our scheme with numerical simulations of CRNs translated from neural networks trained on traditional machine learning datasets, as well as tasks better aligned with potential biological applications including virus detection and spatial pattern formation.
more »
« less
Deep Molecular Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks
Embedding computation in molecular contexts incompatible with traditional electronics is expected to have wide ranging impact in synthetic biology, medicine, nanofabrication and other fields. A key remaining challenge lies in developing programming paradigms for molecular computation that are well-aligned with the underlying chemical hardware and do not attempt to shoehorn ill-fitting electronics paradigms. We discover a surprisingly tight connection between a popular class of neural networks (binary-weight ReLU aka BinaryConnect) and a class of coupled chemical reactions that are absolutely robust to reaction rates. The robustness of rate-independent chemical computation makes it a promising target for bioengineering implementation. We show how a BinaryConnect neural network trained in silico using well-founded deep learning optimization techniques, can be compiled to an equivalent chemical reaction network, providing a novel molecular programming paradigm. We illustrate such translation on the paradigmatic IRIS and MNIST datasets. Toward intended applications of chemical computation, we further use our method to generate a chemical reaction network that can discriminate between different virus types based on gene expression levels. Our work sets the stage for rich knowledge transfer between neural network and molecular programming communities.
more »
« less
- Award ID(s):
- 1901025
- PAR ID:
- 10263907
- Editor(s):
- III, Hal Daumé; Singh, Aarti
- Date Published:
- Journal Name:
- Proceedings of the 37th International Conference on Machine Learning
- Volume:
- 119
- Page Range / eLocation ID:
- 9701 - 9711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synthetic biology is a rapidly emerging research area, with expected wide-ranging impact in biology, nanofabrication, and medicine. A key technical challenge lies in embedding computation in molecular contexts where electronic micro-controllers cannot be inserted. This necessitates effective representation of computation using molecular components. While previous work established the Turing-completeness of chemical reactions, defining representations that are faithful, efficient, and practical remains challenging. This paper introduces CRN++, a new language for programming deterministic (mass-action) chemical kinetics to perform computation. We present its syntax and semantics, and build a compiler translating CRN++ programs into chemical reactions, thereby laying the foundation of a comprehensive framework for molecular programming. Our language addresses the key challenge of embedding familiar imperative constructs into a set of chemical reactions happening simultaneously and manipulating real-valued concentrations. Although some deviation from ideal output value cannot be avoided, we develop methods to minimize the error, and implement error analysis tools. We demonstrate the feasibility of using CRN++ on a suite of well-known algorithms for discrete and real-valued computation. CRN++ can be easily extended to support new commands or chemical reaction implementations, and thus provides a foundation for developing more robust and practical molecular programs.more » « less
-
Proceedings of the 29th International Conference on DNA Computing and Molecular Programming (DNA 29)Chen, Ho-Lin ; Evans, Constantine G. (Ed.)Discrete chemical reaction networks formalize the interactions of molecular species in a well-mixed solution as stochastic events. Given their basic mathematical and physical role, the computational power of chemical reaction networks has been widely studied in the molecular programming and distributed computing communities. While for Turing-universal systems there is a universal measure of optimal information encoding based on Kolmogorov complexity, chemical reaction networks are not Turing universal unless error and unbounded molecular counts are permitted. Nonetheless, here we show that the optimal number of reactions to generate a specific count x ∈ ℕ with probability 1 is asymptotically equal to a "space-aware" version of the Kolmogorov complexity of x, defined as K̃s(x) = min_p {|p|/log|p| + log(space(𝒰(p))) : 𝒰(p) = x}, where p is a program for universal Turing machine 𝒰. This version of Kolmogorov complexity incorporates not just the length of the shortest program for generating x, but also the space usage of that program. Probability 1 computation is captured by the standard notion of stable computation from distributed computing, but we limit our consideration to chemical reaction networks obeying a stronger constraint: they "know when they are done" in the sense that they produce a special species to indicate completion. As part of our results, we develop a module for encoding and unpacking any b bits of information via O(b/log{b}) reactions, which is information-theoretically optimal for incompressible information. Our work provides one answer to the question of how succinctly chemical self-organization can be encoded - in the sense of generating precise molecular counts of species as the desired state.more » « less
-
Biological regulatory networks depend upon chemical interactions to process information. Engineering such molecular computing systems is a major challenge for synthetic biology and related fields. The chemical reaction network (CRN) model idealizes chemical interactions, abstracting away specifics of the molecular implementation, and allowing rigorous reasoning about the computational power of chemical kinetics. Here we focus on function computation with CRNs, where we think of the initial concentrations of some species as the input and the eventual steady-state concentration of another species as the output. Specifically, we are concerned with CRNs that are rate-independent (the computation must be correct independent of the reaction rate law) and composable (𝑓∘𝑔 can be computed by concatenating the CRNs computing f and g). Rate independence and composability are important engineering desiderata, permitting implementations that violate mass-action kinetics, or even “well-mixedness”, and allowing the systematic construction of complex computation via modular design. We show that to construct composable rate-independent CRNs, it is necessary and sufficient to ensure that the output species of a module is not a reactant in any reaction within the module. We then exactly characterize the functions computable by such CRNs as superadditive, positive-continuous, and piecewise rational linear. Our results show that composability severely limits rate-independent computation unless more sophisticated input/output encodings are used.more » « less
-
In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind. Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended “leak” reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new “Robust Detection” algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robust-by-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques.more » « less