skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radiolysis generates a complex organosynthetic chemical network
Abstract The architectural features of cellular life and its ecologies at larger scales are built upon foundational networks of reactions between molecules that avoid a collapse to equilibrium. The search for life’s origins is, in some respects, a search for biotic network attributes in abiotic chemical systems. Radiation chemistry has long been employed to model prebiotic reaction networks, and here we report network-level analyses carried out on a compiled database of radiolysis reactions, acquired by the scientific community over decades of research. The resulting network shows robust connections between abundant geochemical reservoirs and the production of carboxylic acids, amino acids, and ribonucleotide precursors—the chemistry of which is predominantly dependent on radicals. Moreover, the network exhibits the following measurable attributes associated with biological systems: (1) the species connectivity histogram exhibits a heterogeneous (heavy-tailed) distribution, (2) overlapping families of closed-loop cycles, and (3) a hierarchical arrangement of chemical species with a bottom-heavy energy-size spectrum. The latter attribute is implicated with stability and entropy production in complex systems, notably in ecology where it is known as a trophic pyramid. Radiolysis is implicated as a driver of abiotic chemical organization and could provide insights about the complex and perhaps radical-dependent mechanisms associated with life’s origins.  more » « less
Award ID(s):
1724090 2228495
PAR ID:
10264166
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The molecular framework for protometabolism—chemical reactions in a prebiotic environment preceding modern metabolism—has remained unknown in evolutionary biology. Mono-, di-, and tricarboxylic acids that comprise contemporary metabolism, such as the Krebs cycle, are of particular prebiotic relevance and are theorized to predate life on Earth. Researchers have struggled to unravel the molecular origins of respiration, with theories pointing toward abiotic origins later co-opted by the earliest living organisms; however, the molecular network of these molecules has remained elusive. Recent detections of carboxylic acids linked to the Krebs cycle on the Ryugu asteroid and Murchison meteorite rekindled interest in their extraterrestrial origins. Replicating conditions analogous to the environment of dense molecular clouds in laboratory simulation experiments, our work provides compelling evidence on the abiotic synthesis of the complete suite of biorelevant molecules central to the Krebs cycle. The opportunity for these biomolecules forming in deep space could provide molecular origins of protometabolism on early Earth and also provide the molecular feedstock to worlds beyond our own. 
    more » « less
  2. The tractable history of life records a successive emergence of organisms composed of hierarchically organized cells and greater degrees of individuation. The lowermost object level of this hierarchy is the cell, but it is unclear whether the organizational attributes of living systems extended backward through prebiotic stages of chemical evolution. If the systems biology attributes of the cell were indeed templated upon prebiotic synthetic relationships between subcellular objects, it is not obvious how to categorize object levels below the cell in ways that capture any hierarchies which may have preceded living systems. In this paper, we map out stratified relationships between physical components that drive the production of key prebiotic molecules starting from radiolysis of a small number of abundant molecular species. Connectivity across multiple levels imparts the potential to create and maintain far-from-equilibrium chemical conditions and to manifest nonlinear system behaviors best approximated using automata formalisms. The architectural attribute of “information hiding” of energy exchange processes at each object level is shared with stable, multitiered automata such as digital computers. These attributes may indicate a profound connection between the system complexity afforded by energy dissipation by subatomic level objects and the emergence of complex automata that could have preceded biological systems. 
    more » « less
  3. Environmental transmission electron microscopy (E-TEM) enables direct observation of nanoscale chemical processes crucial for catalysis and materials design. However, the high-energy electron probe can dramatically alter reaction pathways through radiolysis, the dissociation of molecules under electron beam irradiation. While extensively studied in liquid-cell TEM, the impact of radiolysis in gas phase reactions remains unexplored. Here, we present a numerical model elucidating radiation chemistry in both gas and liquid E-TEM environments. Our findings reveal that while gas phase E-TEM generates radiolytic species with lower reactivity than liquid phase systems, these species can accumulate to reaction-altering concentrations, particularly at elevated pressures. We validate our model through two case studies: the radiation-promoted oxidation of aluminum nanocubes and disproportionation of carbon monoxide. In both cases, increasing the electron beam dose rate directly accelerates their reaction kinetics, as demonstrated by enhanced AlOx growth and carbon deposition. Based on these insights, we establish practical guidelines for controlling radiolysis in closed-cell nanoreactors. This work not only resolves a fundamental challenge in electron microscopy but also advances our ability to rationally design materials with subÅngstrom resolution. 
    more » « less
  4. null (Ed.)
    ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b. 
    more » « less
  5. Abstract Hydrogenation reactions are a major route of electron and proton flow on Earth. Interfacing geology and organic chemistry, hydrogenations occupy pivotal points in the Earth’s global geochemical cycles. Some examples of hydrogenation reactions on Earth today include the production and consumption of methane in both abiotic and biotic reactions, the reduction of protons in hydrothermal settings, and the biological synthesis and degradation of fatty acids. Hydrogenation reactions were likely important for prebiotic chemistry on the early Earth, and today serve as one of the fundamental reaction classes that enable cellular life to construct biomolecules. An understanding and awareness of hydrogenation reactions is helpful for comprehending the larger web of molecular and material inter-conversions on our planet. In this brief review we detail some important hydrogenation and dehydrogenation reactions as they relate to geology, biology, industry, and atmospheric chemistry. Such reactions have implications ranging from the suite of reactions on early Earth to industrial applications like the production of hydrocarbon fuel. 
    more » « less